Skip to main content
Log in

Some remarks on discrete aperiodic Schrödinger operators

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider Schrödinger operators onl 2( ν) with deterministic aperiodic potential and Schrödinger operators on the l2-space of the set of vertices of Penrose tilings and other aperiodic self-similar tilings. The operators onl 2( ν) fit into the formalism of ergodic random Schrödinger operators. Hence, their Lyapunov exponent, integrated density of states, and spectrum are almost-surely constant. We show that they are actually constant: the Lyapunov exponent for one-dimensional Schrödinger operators with potential defined by a primitive substitution, the integrated density of states, and the spectrum in arbitrary dimension if the system is strictly ergodic. We give examples of strictly ergodic Schrödinger operators that include several kinds of “almost-periodic” operators that have been studied in the literature. For Schrödinger operators on Penrose tilings we prove that the integrated density of states exists and is independent of boundary conditions and the particular Penrose tiling under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. U. Mizutani, Y. Sakabe, T. Shibuya, K. Kishi, K. Kimura, and S. Takeuchi, Electron transport properties of thermodynamically stable Al-Cu-Ru icosahedral quasicrystals,J. Phys.: Cond. Matter 2:6169–6178 (1990).

    Google Scholar 

  2. T. Klein, A. Gozlan, C. Berger, F. Cyrot-Lackmann, Y. Calvayrac, and A. Quivy, Anomalous transport properties in pure AlCuFe icosahedral phases of high structural quality,Europhys. Lett. 13:129–134 (1990).

    Google Scholar 

  3. B. D. Biggs, S. J. Poon, and N. R. Munirathnam, table Al-Cu-Ru icosahedral crystals: A new class of electronic alloys,Phys. Rev. Lett. 65:2700–2703 (1990).

    Google Scholar 

  4. D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Metallic phase with long-range orientational order and no translational symmetric,Phys. Rev. Lett. 53:1951–1953 (1984).

    Google Scholar 

  5. J. Bellisard, Almost periodicity in solid state physics and C*-algebras, inThe Harald Bohr Centenary, C. Berg and F. Flugede, eds.,Dansk. Vid. Selsk. Mat.-Fys. Medd. 42(3):35–75 (1989).

  6. H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon,Schrödinger Operators—with Application to Quantum Mechanics and Global Geometry (Springer-Verlag, Berlin, 1987).

    Google Scholar 

  7. R. Carmona and J. Lacroix,Spectral Theory of Random Schrödinger Operators (Birkhäuser, Basel, 1990).

    Google Scholar 

  8. L. Pastur and A. Figotin,Spectra of Random and Almost-Periodic Operators (Springer-Verlag, Berlin, 1992).

    Google Scholar 

  9. M. Kohmoto and B. Sutherland, Electronic states on a Penrose lattice,Phys. Rev. Lett. 56:2740–2743 (1986).

    Google Scholar 

  10. M. Queflélec,Substitution Dynamical Systems—Spectral Analysis, Lect. Notes in Math. 1294 (Springer, 1987).

  11. F. M. Dekking, The spectrum of dynamical systems arising from substitutions of constant length,Z. Wahr. Verw. Geb. 41:221–239 (1978).

    Google Scholar 

  12. A. Hof, Quasicrystals, aperiodicity and lattice systems, Thesis, University of Groningen, The Netherlands (1992).

    Google Scholar 

  13. W. F. Lunnon and P. A. B. Pleasants, Quasicrystallographic tilings,J. Math. Pures Appl. 66:217–263 (1987).

    Google Scholar 

  14. B. Grünbaum and G. C. Shephard,Tilings and Patterns (Freeman, 1987).

  15. N. G. de Bruijn, Algebraic theory of Penrose's non-periodic tilings of the plane. I,Ned. Akad. Wetensch. Proc. A 84:39–52 (1981) (=Indag. Math. 84:39-52.

    Google Scholar 

  16. N. G. de Bruijn, Algebraic theory of Penrose's non-periodic tilings of the plane. II,Ned. Akad. Wetensch. Proc. A 84:53–66 (1981) (=Indag. Math. 84:53-66).

    Google Scholar 

  17. N. G. de Bruijn, Updown generation of Penrose tilings,Indag. Math. N. S. 1:201–220 (1990).

    Google Scholar 

  18. C. P. M. Geerse and A. Hof, Lattice gas models on self-similar aperiodic tilings,Rev. Math. Phys. 3:163–221 (1991).

    Google Scholar 

  19. D. W. Robinson and D. Ruelle, Mean entropy of states in classical statistical mechanics,Commun. Math. Phys. 5:288–300 (1967).

    Google Scholar 

  20. M. E. Fisher, The free energy of a macroscopic system,Arch. Rat. Mech. 17:377–410 (1964).

    Google Scholar 

  21. J. Avron and B. Simon, Almost periodic Schrödinger operators II. The integrated density of states,Duke Math. J. 50:369–391 (1983).

    Google Scholar 

  22. J. Bellisard, A. Bovier, and J.-M. Ghez, Spectral properties of a tight binding Hamiltonian with period doubling potential,Commun. Math. Phys. 135:379–399 (1991).

    Google Scholar 

  23. A. Bovier and J.-M. Ghez, Spectral properties of one-dimensional Schrödinger operators with potentials generated by substitutions, Preprint CNRS Luminy (1992).

  24. P. Walters, Unique ergodicity and random matrix products, inLyapunov Exponents — Proceedings, Bremen, 1984, L. Arnold and V. Wihstutz, eds., Lect. Notes in Math. 1186 (Springer-Verlag, Berlin, 1986), pp. 37–55.

    Google Scholar 

  25. M. Kohmoto and B. Sutherland, Electronic and vibrational modes on a Penrose lattice: Localized states and band structure,Phys. Rev. B 34:3849–3853 (1986).

    Google Scholar 

  26. B. Sutherland, Self-similar ground state wave function for electrons on a two-dimensional Penrose lattice,Phys. Rev. B 34:3904–3909 (1986).

    Google Scholar 

  27. T. Odagaki and D. Nguyen, Electronic and vibrational spectra of two-dimensional quasicrystals,Phys. Rev. B 33:2184–2190 (1986); Erratum,Phys. Rev. B 34:5929–5930 (1986).

    Google Scholar 

  28. M. Arai, T. Tokihiro, and T. Fujiwara, Strictly localized states on a two-dimensional Penrose lattice,Phys. Rev. B 38:1621–1626 (1988).

    Google Scholar 

  29. Y. Liu and P. Ma, Electronic properties of two-dimensional quasicrystals with near-neighbour interactions,Phys. Rev. B 43:1378–1384 (1991).

    Google Scholar 

  30. J. A. Ashraff, J.-M. Luck, and R. B. Stinchcombe, Dynamical properties of two-dimensional quasicrystals,Phys. Rev. B 41:4314–4329 (1990).

    Google Scholar 

  31. V. G. Benza and C. Sire, Band spectrum of the octagonal quasicrystal: Finite measure, gaps, and chaos,Phys. Rev. B 44:10343–10345 (1991).

    Google Scholar 

  32. B. Passaro, C. Sire, and V. G. Benza, Anomalous diffusion and conductivity in octagonal tiling models,Phys. Rev. B 46:13751–13755 (1992).

    Google Scholar 

  33. R. A. Horn and C. R. Johnson,Matrix Analysis (Cambridge University Press, Cambridge, 1985).

    Google Scholar 

  34. G. A. Mezincescu, Lifschitz singularities for periodic operators plus random potentials,J. Stat. Phys. 49:1181–1190 (1987).

    Google Scholar 

  35. H. Tsunetsugu, F. Fujiwara, K. Ueda, and T. Tokihiro, Electronic properties of the Penrose lattice. I. Energy spectrum and wave functions,Phys. Rev. B 43:8879–8891 (1991).

    Google Scholar 

  36. P. Walters,An Introduction to Ergodic Theory (Springer-Verlag, Berlin, 1982).

    Google Scholar 

  37. N. Dunford and J. T. Schwartz,Linear Operators. Part II: Spectral Theory—Self-Adjoint Operators in Hilbert Space (Interscience, New York, 1963).

    Google Scholar 

  38. J. M. Luck, Cantor spectra and scaling of gap widths in deterministic aperiodic systems,Phys. Rev. B 39:5834–5849 (1989).

    Google Scholar 

  39. J. Bellisard, A. Bovier, and J.-M. Ghez, Gap labelling theorems for one dimensional discrete Schrödinger operators,Rev. Math. Phys. 4:1–37 (1992).

    Google Scholar 

  40. K. Ueda and H. Tsunetsugu, Energy spectrum and conductance of a two-dimensional quasicrystal,Phys. Rev. Lett. 58:1272–1275 (1987).

    Google Scholar 

  41. W. A. Schwalm and M. K. Schwalm, Extension theory for lattice Green functions,Phys. Rev. B 37:9524–9542 (1988).

    Google Scholar 

  42. X. Fu, Y. Liu, B. Cheng, and D. Zheng, Spectral structure of two-dimensional Fibonacci quasilattices,Phys. Rev. B 43:10808–10814 (1991).

    Google Scholar 

  43. J. Bellisard and E. Scoppola, The density of states for almost periodic Schrödinger operators and the frequency module: A counter example,Commun. Math. Phys. 85:301–308 (1982).

    Google Scholar 

  44. M. Kohmoto, L. P. Kadanoff, and C. Tang, Localization problem in one dimension: Mapping and escape,Phys. Rev. Lett. 50:1870–1872 (1983).

    Google Scholar 

  45. F. Delyon and D. Petritis, Absence of localization in a class of Schrödinger operators with quasiperiodic potential,Commun. Math. Phys. 103:441–444 (1986).

    Google Scholar 

  46. M. Casdagli, Symbolic dynamics for the renormalization map of a quasiperiodic Schrödinger equation,Commun. Math. Phys. 107:295–318 (1986).

    Google Scholar 

  47. J. Bellisard, B. Iochum, E. Scoppola, and D. Testard, Spectral properties of one dimensional quasi-crystals,Commun. Math. Phys. 125:527–543 (1989).

    Google Scholar 

  48. J. Bellisard, B. Iochum, and D. Testard, Continuity properties of the electronic spectrum of 1d quasicrystals,Commun. Math. Phys. 141:353–380 (1991).

    Google Scholar 

  49. I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai,Ergodic Theory (Springer-Verlag, Berlin, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hof, A. Some remarks on discrete aperiodic Schrödinger operators. J Stat Phys 72, 1353–1374 (1993). https://doi.org/10.1007/BF01048190

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01048190

Key words

Navigation