Skip to main content
Log in

A new Monte Carlo power method for the eigenvalue problem of transfer matrices

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We propose a new Monte Carlo method for calculating eigenvalues of transfer matrices leading to free energies and to correlation lengths of classical and quantum many-body systems. Generally, this method can be applied to the calculation of the maximum eigenvalue of a nonnegative matrix  such that all the matrix elements of Âk are strictly positive for an integerk. This method is based on a new representation of the maximum eigenvalue of the matrix  as the thermal average of a certain observable of a many-body system. Therefore one can easily calculate the maximum eigenvalue of a transfer matrix leading to the free energy in the standard Monte Carlo simulations, such as the Metropolis algorithm. As test cases, we calculate the free energies of the square-lattice Ising model and of the spin-1/2XY Heisenberg chain. We also prove two useful theorems on the ergodicity in quantum Monte Carlo algorithms, or more generally, on the ergodicity of Monte Carlo algorithms using our new representation of the maximum eigenvalue of the matrixÂ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,J. Chem. Phys. 21:1087 (1953).

    Google Scholar 

  2. K. Binder,J. Comp. Phys. 59:1 (1985).

    Google Scholar 

  3. K. Binder, ed.,Monte Carlo Methods in Statistical Physics, 2nd ed. (Springer, Berlin, 1986).

    Google Scholar 

  4. K. Binder, ed.,Applications of the Monte Carlo Method in Statistical Physics (Springer, Berlin, 1984).

    Google Scholar 

  5. H. De. Raedt and A. Lagendijk,Phys. Rep. 127:233 (1985).

    Google Scholar 

  6. M. Suzuki, ed.,Quantum Monte Carlo Methods in Equilibrium and Nonequilibrium (Springer, Berlin, 1986).

    Google Scholar 

  7. M. Suzuki,J. Stat. Phys. 43:883 (1986).

    Google Scholar 

  8. J. P. Hansen and L. Verlet,Phys. Rev. 184:151 (1969).

    Google Scholar 

  9. M. P. Nightingale and H. W. Blöte,Phys. Rev. Lett. 60:1562 (1988).

    Google Scholar 

  10. D. M. Ceperly and M. H. Kalos, inMonte Carlo Methods in Statistical Physics, 2nd ed., K. Binder, ed. (Springer, Berlin, 1986).

    Google Scholar 

  11. J. H. Hetherington,Phys. Rev. A 30:2713 (1984).

    Google Scholar 

  12. R. J. Baxter,Exactly Solved Models in Statistical Mechanics (Academic Press, 1982).

  13. L. Onsager,Phys. Rev. 65:117 (1944).

    Google Scholar 

  14. A. G. Schlijper, A. R. D. van Bergen, and B. Smit,Phys. Rev. A 41:1175 (1990); A. G. Schlijper and B. Smit,J. Stat. Phys. 56:247 (1989).

    Google Scholar 

  15. H. Betsuyaku,Phys. Rev. Lett. 53:629 (1984).

    Google Scholar 

  16. M. Suzuki,Phys. Rev. B 31:2957 (1985).

    Google Scholar 

  17. M. Suzuki and M. Inoue,Prog. Theor. Phys. 78:787 (1987).

    Google Scholar 

  18. M. Inoue and M. Suzuki,Prog. Theor. Phys. 79:645 (1988).

    Google Scholar 

  19. T. Koma,Prog. Theor. Phys. 78:1213 (1987).

    Google Scholar 

  20. T. Koma,Prog. Theor. Phys. 81:783 (1989).

    Google Scholar 

  21. T. Koma,Prog. Theor. Phys. 83:655 (1990).

    Google Scholar 

  22. M. Marcu, inQuantum Monte Carlo Methods in Equilibrium and Nonequilibrium, M. Suzuki, ed. (Springer, Berlin, 1986).

    Google Scholar 

  23. S. Miyashita,J. Phys. Soc. Jpn. 57:1934 (1988).

    Google Scholar 

  24. K. Kubo, T. A. Kaplan, and J. R. Borysowicz,Phys. Rev. B 38:11550 (1988).

    Google Scholar 

  25. A. Wiesler,Phys. Lett. 89A:359 (1982).

    Google Scholar 

  26. Y. Okabe and M. Kikuchi,Phys. Rev. B 34:7896 (1986).

    Google Scholar 

  27. A. B. Bortz, M. H. Kalos, and J. L. Lebowitz,J. Comp. Phys. 17:10 (1975).

    Google Scholar 

  28. R. Takahashi, T. Koma, T. Irisawa, and T. Kan, Annual Meeting of Physical Society of Japan, Osaka, Japan, March 1990.

  29. H. Akaike,IEEE Trans. Automatic Control AC-19:716 (1974).

    Google Scholar 

  30. M. Suzuki,Phys. Lett. 113A:299 (1985).

    Google Scholar 

  31. E. Lieb, T. Schultz, and D. Mattis,Ann. Phys. (NY)16:407 (1961).

    Google Scholar 

  32. S. Katsura,Phys. Rev. 127:1508 (1962).

    Google Scholar 

  33. M. Yamada,J. Phys. Soc. Jpn. 59:848 (1990).

    Google Scholar 

  34. T. Koma, Annual Meeting of Physical Society of Japan, Osaka, Japan, March 1990.

  35. K. Nomura and M. Yamada,Phys. Rev. B 43:8217 (1991).

    Google Scholar 

  36. M. Takahashi,Phys. Rev. B 43:5788 (1991).

    Google Scholar 

  37. H. Tsunetsugu,J. Phys. Soc. Jpn. 60:1460 (1991).

    Google Scholar 

  38. R. J. Glauber,J. Math. Phys. 4:294 (1963).

    Google Scholar 

  39. K. Kawasaki, inPhase Transitions and Critical Phenomena, Vol. 2, C. Domb and M. S. Green, eds. (Academic Press, New York, 1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koma, T. A new Monte Carlo power method for the eigenvalue problem of transfer matrices. J Stat Phys 71, 269–297 (1993). https://doi.org/10.1007/BF01048100

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01048100

Key words

Navigation