Skip to main content
Log in

A BGK model for small Prandtl number in the Navier-Stokes approximation

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present a BGK-type collision model which approximates, by a Chapman-Enskog expansion, the compressible Navier-Stokes equations with a Prandtl number that can be chosen arbitrarily between 0 and 1. This model has the basic properties of the Boltzmann equation, including theH-theorem, but contains an extra parameter in comparison with the standard BGK model. This parameter is introduced multiplying the collision operator by a nonlinear functional of the distribution function. It is adjusted to the Prandtl number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Bardos, Une interprétation des relations existant entre les équations de Boltzmann, de Navier-Stokes et d'Euler à l'aide de l'entropie,Math. Appl. Comp. 6(1):97–117 (1987).

    Google Scholar 

  2. P. L. Bhatnagar, E. P. Gross, and M. Krook, A model for collision processes in gases,Phys. Rev. 94:511 (1954).

    Google Scholar 

  3. R. E. Caflish, The fluid dynamic limit of the nonlinear Boltzmann equation,Commun. Pure Appl. Math. 33:651–666 (1980).

    Google Scholar 

  4. C. Cercignani,The Boltzmann Equation and its Applications (Springer-Verlag, Berlin, 1988), pp. 95–97.

    Google Scholar 

  5. S. Chapman and T. G. Cowling,The Mathematical Theory of Nonuniform Gases (Cambridge University Press, Cambridge, 1939).

    Google Scholar 

  6. S. M. Deshpande, A second-order accurate kinetic-theory-based method for inviscid compressible flows, NASA Technical paper No. 2613 (1986).

  7. F. Golse, P. L. Lions, B. Perthame, and R. Sentis, Regularity of the moments of the solution of a transport equation,J. Funct. Anal. 74(1):110–125 (1988).

    Google Scholar 

  8. H. Grad, Asymptotic theory of the Boltzmann equation II, inThird Symposium on Rarefied Gas Dynamics I (Academic Press, New York, 1963), pp. 26–59.

    Google Scholar 

  9. S. Kawashima, A. Matsumura, and T. Nishida, On the fluid-dynamical approximation to the Boltzmann equation at the level of the Navier-Stokes equation,Commun. Math. Phys. 70:97–124 (1979).

    Google Scholar 

  10. Y. L. Klimontovich, The unique description of kinetic and hydrodynamic processes,Physica A, to appear.

  11. B. Perthame, Global existence to the BGK model of Boltzmann equation,J. Diff Eg. 82(1):191–205 (1989).

    Google Scholar 

  12. B. Perthame and A. Pham, The Dirichlet boundary value problem for BGK equation, inAdvances in Kinetic Theory and Continuum Mechanics, R. Gatignol and Soubbaramayer, eds. (Springer-Verlag, Berlin, 1991).

    Google Scholar 

  13. D. I. Pullin, Direct simulation methods for compressible inviscid ideal-gas flow,J. Comput. Phys. 34(2):231–244 (1980).

    Google Scholar 

  14. R. D. Reitz, One-dimensional compressible gas dynamics calculations using the Boltzmann equation,J. Comput. Phys. 42(1):108–123 (1981).

    Google Scholar 

  15. E. Ringeisen, Thesis, Université Paris 7 (1991).

  16. C. Truesdell and R. G. Muncaster,Fundamentals of Maxwell's Kinetic Theory of a Simple Monatomic Gas (Academic Press, New York, 1980).

    Google Scholar 

  17. P. Welander,Ark. Fys. 7:507 (1954).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouchut, F., Perthame, B. A BGK model for small Prandtl number in the Navier-Stokes approximation. J Stat Phys 71, 191–207 (1993). https://doi.org/10.1007/BF01048094

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01048094

Key words

Navigation