Skip to main content
Log in

Pair interaction lattice gas simulations: Flow past obstacles in two and three dimensions

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Apart from the FCHC (face-centered hypercube), Nasilowski's pair interaction lattice gas (PI) is the only known lattice gas automaton for three-dimensional hydrodynamic simulations. Unfortunately, the viscosity of PI is not isotropic. In order to determine the degree anisotropy, we derive fluid dynamic equations for the regime of compressible viscid flow. From relaxation measurements of waves propagating in various directions we compute the physically relevant dissipation coefficients and compare our results with theoretical predictions. Although PI shows a high degree of anisotropy, we define the mean value of the dissipation tensor as effective shear viscosity. Using this value of v 2Deff =0.35, two-dimensional simulations of flow past a cylinder yield drag coefficients in quantitative agreement with wind tunnel measurements over a range of Reynolds numbers of 5–50. Three-dimensional simulations of flow past a sphere yield qualitative agreement with various references. A fit of the results to a semi-empirical curve provides an effective value of v 2Deff =0.21 for a range of Reynolds numbers from 0.19 to 40. In order to check for finite-size effects, we measured the mean free pathλ and computed the Knudsen numbers. We obtainedλ≈ 1 lattice unit, corresponding to Kn=0.01 (2D) and Kn=0.1 (3D). We found no significant finite-size effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Burgess, F. Hayot, and W. F. Saam, Model for surface tension in lattice-gas hydrodynamics,Phys. Rev. A 38(7):3589–3592 (1988).

    Google Scholar 

  2. C. Cercignani, Kinetic theory with “bounce-back” boundary conditions,Transport Theory Stat. Phys. 18(1):125–131 (1989).

    Google Scholar 

  3. S. Chen, K. Diemer, G. D. Doolen, K. Eggert, C. Fu, S. Gutman, and B. J. Travis, Lattice gas automata for flow through porous media,Physica D 47:72–84 (1991).

    Google Scholar 

  4. S. Chen, M. Lee, K. H. Zhao, and G. D. Doolen, A lattice gas model with temperature,Physica D 37:42–59 (1989).

    Google Scholar 

  5. P. Clavin, P. Lallemand, Y. Pomeau, and G. Searby, Simulation of free boundaries in flow systems by lattice-gas models,J. Fluid Mech. 188:437–464 (1988).

    Google Scholar 

  6. R. Cornubert, D. d'Humières, and D. Levermore, A Knudsen layer theory for lattice gases,Physica D 47:241–259 (1991).

    Google Scholar 

  7. D. d'Humières and P. Lallemand, Lattice gas automata for fluid mechanics,Physica A 140:326–335 (1986).

    Google Scholar 

  8. D. d'Humières and P. Lallemand, Numerical simulations of hydrodynamics with lattice gas automata in two dimensions,Complex Syst. 1(4):598–632 (1987).

    Google Scholar 

  9. D. d'Humières, P. Lallemand, and U. Frisch, Lattice gas models for 3D hydrodynamics,Europhys. Lett. 2:291–297 (1986).

    Google Scholar 

  10. J. A. M. S. Duarte and U. Brosa, Viscous drag by cellular automata,J. Stat. Phys. 59(1/2):501–508 (1989).

    Google Scholar 

  11. H. Faxén,Nova Acta Reg. Soc. Scient. Ups. (vol. ex ord. ed., 1927).

  12. U. Frisch, D. d'Humières, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.-P. Rivet, Lattice gas hydrodynamics in two and three dimensions,Complex Syst. 1:649–707 (1987).

    Google Scholar 

  13. U. Frisch, B. Hasslacher, and Y. Pomeau, Lattice-gas automata for Navier-Stokes equations,Phys. Rev. Lett. 56:1505–1508 (1986).

    Google Scholar 

  14. S. Goldstein, The steady flow of viscous fluid past a fixed spherical obstacle at small Reynolds numbers,Proc. R. Soc. Lond. A 123:225–235 (1929).

    Google Scholar 

  15. J. Hardy, Y. Pomeau, and de Pazzis, O. Time evolution of a two-dimensional model system. I. Invariant states and time correlation functions,J. Math. Phys. 14(12):1746–1759 (1973).

    Google Scholar 

  16. F. Hayot and M. R. Lakshmi, Cylinder wake in lattice gas hydrodynamics,Physica D 40:415–420 (1989).

    Google Scholar 

  17. M. Hénon, Isometric collision rules for four-dimensional FCHC lattice gas,Complex Syst. 1(3):475–494 (1987).

    Google Scholar 

  18. M. Hénon, Viscosity of a lattice gas,Complex Syst. 1(4):762–790 (1987).

    Google Scholar 

  19. J. Huang, Y. Chu, and C. Yin, Lattice-gas automata for modeling acoustic wave propagation in inhomogeneous media,Geol. Res. Lett. 15(11):1239–1241 (1988).

    Google Scholar 

  20. G. Kohring, Using cellular automata for modeling fluid flows in porous media, Invited talk presented at the Seminar I Petroleumsfysikk, Stavanger, Norway (August 15–16, 1992).

    Google Scholar 

  21. G. A. Kohring, Parallelization of short- and long-range cellular automata on scalar, vector, SIMD and MIMD machines,J. Mod. Phys. C 2(3):755–772 (1991).

    Google Scholar 

  22. G. A. Kohring, Calculations of drag coefficients via hydrodynamic cellular automata,J. Phys. II (Paris)2:265–269 (1992).

    Google Scholar 

  23. C. F. Kougias, Simulating a small-scale oceanic front of river discharge type with the lattice gas automata method, Ph.D. thesis, Universität Oldenburg (1991).

  24. H. Lamb,Hydrodynamics (Cambridge University Press, Cambridge, 1932).

    Google Scholar 

  25. P. Lavallée, J. P. Boon, and A. Noullez, Boundary interactions in a lattice gas, inProceedings of the Workshop on Discrete Kinetic Theory, Lattice Gas Dynamics and Foundations of Hydrodynamics, Torino, Italy, 1988, R. Monaco, ed. (World Scientific, Singapore, 1989), pp. 160–162.

    Google Scholar 

  26. H. Lim, Cellular-automaton simulations of simple boundary-layer problems,Phys. Rev. A 40(2):968–980 (1989).

    Google Scholar 

  27. P. Mazur and A. J. Weisenborn, The Oseen drag on a sphere and the method of induced forces,Physica A 123:209–226 (1984).

    Google Scholar 

  28. K. Molvig, P. Donis, R. Miller, J. Myczkowski, and G. Vichniac, Multispecies lattice-gas automata for realistic fluid dynamics, inCellular Automata and Modeling of Complex Physical Systems, G. Y. Vichiniac, P. Manneville, N. Boccara, and R. Bidaux, eds. (Springer-Verlag, 1989), pp. 206–232.

  29. D. Montgomery and G. D. Doolen, Two cellular automata for plasma computations,Complex Syst. 1:830–838 (1987).

    Google Scholar 

  30. R. Nasilowski, A cellular-automaton fluid model with simple rules in arbitrary many dimensions,J. Stat. Phys. 65:97–138 (1991).

    Google Scholar 

  31. C. W. Oseen, Über die Stokes'sche Formel, und über eine verwandte Aufgabe in der Hydrodynamik,Ark. Mat. Astr. Fys. 6(29):1–20 (1910).

    Google Scholar 

  32. C. W. Oseen, Über den Gültigkeitsbereich der Stokesschen Widerstandsformel,Ark. Mat. Astr. Fys. 9(16):1–15 (1913).

    Google Scholar 

  33. I. Proudman and J. R. A. Pearson, Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder,J. Fluid Mech. 2:237–262 (1957).

    Google Scholar 

  34. D. H. Rothman, Cellular-automaton fluids: A model for flow in porous media,Geophysics 53(4):509–518 (1988).

    Google Scholar 

  35. D. H. Rothman and J. M. Keller, Immiscible cellular-automaton fluids,J. Stat. Phys. 52:1119–1127 (1988).

    Google Scholar 

  36. H. Schlichting,Grenzschicht-Theorie (Verlag G. Braun, Karlsruhe, 1982).

    Google Scholar 

  37. J. A. Somers and P. C. Rem, The construction of efficient collision tables for fluid flow computations with cellular automata, inCellular Automata and Modeling of Complex Physical Systems, G. Y. Vichiniac, P. Manneville, N. Boccara, and R. Bidaux, eds. (Springer-Verlag, 1989), pp. 206–232.

  38. G. G. Stokes, On the effect of internal friction of fluids on the motion of pendulums,Trans. Camb. Phil. Soc. 9:8–106 (1851).

    Google Scholar 

  39. D. J. Tritton, Experiments on the flow past a circular cylinder at low Reynolds numbers,J. Fluid Mech. 6:547–567 (1959).

    Google Scholar 

  40. A. J. Weisenborn and P. Mazur, The Oseen drag on a cylinder revisited,Physica 123A:191–208 (1984).

    Google Scholar 

  41. D. A. Wolf-Gladrow and A. Vogeler, Pair interaction lattice gas on general purpose computers: FORTRAN or C?Int. J. Mod. Phys. C, to be published.

  42. D. A. Wolf-Gladrow, R. Nasilowski, and A. Vogeler, Numerical simulations of fluid dynamics with a pair interaction automaton in two dimensions,Complex Syst. 5:89–100 (1991).

    Google Scholar 

  43. S. Wolfram, Cellular automaton fluids 1: Basic theory,J. Stat. Phys. 45:471–526 (1986).

    Google Scholar 

  44. Zahm, Technical Report 253, National Advisory Committee for Aeronautics (1923).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogeler, A., Wolf-Gladrow, D.A. Pair interaction lattice gas simulations: Flow past obstacles in two and three dimensions. J Stat Phys 71, 163–190 (1993). https://doi.org/10.1007/BF01048093

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01048093

Key words

Navigation