Skip to main content
Log in

A functional central limit theorem for a nonequilibrium model of interacting particles with unbounded intensity

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Under suitable physically reasonable initial assumptions, a functional central limit theorem is obtained for a nonequilibrium model of randomly interacting particles with unbounded jump intensity. This model is related to a nonlinear Boltzmann-type equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Billingsley,Convergence of Probability Measures (Wiley, New York, 1968).

    Google Scholar 

  2. R. Ferland, Equations de Boltzmann scalaires: convergence, fluctuations et propagation du choas trajectorielle, Ph.D. thesis, Université de Sherbrooke (1989).

  3. R. Ferland, X. Fernique, and G. Giroux, Compactness of the fluctuations associated with some generalized nonlinear Boltzmann equations;Can. J. Math. 44:1192–1205 (1992).

    Google Scholar 

  4. R. Ferland and J. C. Roberge, Binomial Boltzmann Processes: Convergence of the Fluctuations, Technical Report 193, Département de mathématiques et d'informatique, Université du Québec à Montréal (1992).

  5. X. Fernique, Convergence en loi des fonctions aléatoires continues ou cadlag, propriétés de compacité des lois, inLecture Notes in Mathematixcs, No. 1485 (Springer-Verlag, Berlin, 1991), pp. 178–195.

    Google Scholar 

  6. K. Ito,Foundation of Stochastic Differential Equations in Infinite Dimensional Spaces (Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania, 1984).

    Google Scholar 

  7. J. Jacob and A. N. Shiryaev,Limit Theorems for Stochastic Processes (Springer-Verlag, Berlin, 1987).

    Google Scholar 

  8. M. Kac, Some probabilistic aspects of the Boltzmann equation,Acta Phys. Aust. Suppl. 10:379–400 (1973).

    Google Scholar 

  9. J. Keizer,Statistical Thermodynamics of Nonequilibrium Processes (Springer-Verlag, New York, 1987).

    Google Scholar 

  10. H. P. McKean, Fluctuation in the kinetic theory of gases,Commun. Pure Appl. Math. 28:435–455 (1975).

    Google Scholar 

  11. K. R. Parthasarathy,Probability Measures on Metric Spaces (Academic Press, New York, 1969).

    Google Scholar 

  12. A. V. Skorohod,Stochastic Equations for Complex Systems (Reidel, Dordrecht, 1988).

    Google Scholar 

  13. H. Spohn,Large Scale Dynamics of Interacting Particles (Springer-Verlag, New York, 1991).

    Google Scholar 

  14. A.-S. Sznitman, Équations de type de Boltzmann, spatialement homogénes,Z. Wahrsch. Verw. Gebiete 66:559–592 (1984).

    Google Scholar 

  15. H. Tanaka, Fluctuation theory for Kac's one-dimensional model of Maxwellian molecules,Sankhy¯a Ser. A 44:23–26 (1982).

    Google Scholar 

  16. K. Uchiyama, Fluctuations of Markovian systems in Kac's caricature of a Maxwellian gas,J. Math. Soc. Jpn. 35(3):477–499 (1983).

    Google Scholar 

  17. K. Uchiyama, A fluctuations problem associated with the Boltzmann equation for a gas a molecules with a cutoff potential,Jpn. J. Math. 9:27–53 (1983).

    Google Scholar 

  18. W. Wagner, A convergence proof for Bird's direct simulation Monte Carlo method for the Boltzmann equation,J. Stat. Phys. 66:689–722 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bezandry, P.H., Fernique, X. & Giroux, G. A functional central limit theorem for a nonequilibrium model of interacting particles with unbounded intensity. J Stat Phys 72, 329–353 (1993). https://doi.org/10.1007/BF01048053

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01048053

Key words

Navigation