Skip to main content
Log in

A new transition for projections of multifractal measures and random maps

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Typical projections of simple multifractal measures with generalized dimensionsD q onto subspaces of dimensionD are considered. It is known that forD o > D almost all projections have Euclidean support. Here it is shown that if in additionD∞ increases beyondD, a typical projection changes from a singular continuous distribution to an absolutely continuous measure with a squareintegrable, or even differentiable density, and thus from a multifractal to an ordinary distribution with trivial singularity spectrum. Since projections of strictly self-similar measures can be regarded as invariant distributions of iterated function systems, such a transition is found also there and is expected to occur in related systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. G. E. Hentschel and I. Procaccia,Physica 8D:435 (1983).

    Google Scholar 

  2. R. Benziet al, J. Phys. A 17:3521 (1984).

    Google Scholar 

  3. T. C. Halseyet al, Phys. Rev. A 33:1141 (1986).

    Google Scholar 

  4. B. B. Mandelbrot,The Fractal Geometry of Nature (Freeman, New York, 1983).

    Google Scholar 

  5. T. Tél,Z. Naturforsch. 43a:1154 (1988); inDirections of Chaos, Vol. 3, Hao Bai-lin, ed. (World Scientific, Singapore, 1990).

    Google Scholar 

  6. J. Feder,Fractals (Plenum, New York, 1988).

    Google Scholar 

  7. H. G. Schuster,Deterministic Chaos, 2nd ed. (VCH, Weinheim, 1988).

    Google Scholar 

  8. K. Falconer,Fractal Geometry (Wiley, Chichester, 1990).

    Google Scholar 

  9. M. F. Barnsley and S. Demko,Proc. R. Soc. Lond. A 399:243 (1985); M. F. Barnsley,Fractals Everywhere (Academic Press, San Diego, California, 1988).

    Google Scholar 

  10. R. Bruinsma and G. Aeppli,Phys. Rev. Lett. 50:1494 (1983); G. Györgyi and P. Ruján,J. Phys. C 17:4207 (1984); S. N. Evangelou,J. Phys. C 20:L511 (1984); U. Behn and V. A. Zagrebnov,J. Stat. Phys. 47:939 (1987); J. Bene and P. Szépfalusy,Phys. Rev. A 37:1703 (1988).

    Google Scholar 

  11. F. Martinelli and E. Scoppola,J. Stat. Phys. 50:1021 (1988).

    Google Scholar 

  12. G. Radons, D. Werner, and H. G. Schuster,Phys. Lett. A 174:293 (1993).

    Google Scholar 

  13. S. Karlin,Pac. J. Math. 3:725 (1953).

    Google Scholar 

  14. D. Zamballa and P. Grassberger,Complex Syst. 2:269 (1988).

    Google Scholar 

  15. P. Mattila,Ann. Acad. Sci. Fenn. Ser. A. I. Math. 1:227 (1975).

    Google Scholar 

  16. J. P. Kahane and R. Salem,Colloq. Math. 6:193 (1958).

    Google Scholar 

  17. A. Chhabra and R. V. Jensen,Phys. Rev. Lett. 62:1327 (1989).

    Google Scholar 

  18. C. Godréche and J. M. Luck,J. Phys. A 23:3769 (1990).

    Google Scholar 

  19. K. J. Falconer,J. Stat. Phys. 47:123 (1987);Math. Proc. Camb. Phil. Soc. 103:339 (1988).

    Google Scholar 

  20. B. Jessen and A. Wintner,Trans. Am. Math. Soc. 38:48 (1935).

    Google Scholar 

  21. P. Erdös,Am. J. Math. 61:974 (1939).

    Google Scholar 

  22. A.-L. Barabási, P. Szépfalusy, and T. Vizsek,Physica A 178:17 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radons, G. A new transition for projections of multifractal measures and random maps. J Stat Phys 72, 227–239 (1993). https://doi.org/10.1007/BF01048048

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01048048

Key words

Navigation