Skip to main content
Log in

A microscopic justification of the Wulff construction

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We report results about a rigorous microscopic justification of the Wulff construction for the two-dimensional Ising model at low temperatures and under periodic boundary conditions. The idea of the proof is sketched.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Gibbs, On the equilibrium of heterogeneous substances, inThe Scientific Papers of J. Williard Gibbs, Vol. 1,Thermodynamics (Longmans, Green & Co., 1906), pp. 315–326.

  2. P. Curie, Sur la formation des crystaux et les constants de capillarité de leur different phase,Bull. Soc. Fr. Minéral. 8:145–150 (1885).

    Google Scholar 

  3. G. Wulff, Zur Frage der Geschwindigkeit des Wachstums und der Auflösung der Krystallflachen,Z. Krystallogr. Mineral. 34:449 (1901).

    Google Scholar 

  4. M. von Laue, Der Wulffsche Satz für die Gleichgewichtsform von Kristallen,Z. Krist. 105:124–133 (1943).

    Google Scholar 

  5. C. Herring, Some theorems on the free energies of crystal surfaces,Phys. Rev. 82:87–93 (1951).

    Google Scholar 

  6. J. C. Heyraud and J. J. Métois, Establishment of the equilibrium shape of metal crystallites on a foreign substrate: Gold on graphite,J. Cryst. Growth 50:571–574 (1980).

    Google Scholar 

  7. J. C. Heyraud and J. J. Métois, Equilibrium shape and temperature; lead on graphite,Surf. Sci. 128:334–342 (1983).

    Google Scholar 

  8. S. Balibar and B. Castaign, Possible observation of the roughening transition in helium,J. Phys. Lett. (Paris)41:L329–332 (1980).

    Google Scholar 

  9. S. Balibar and B. Castaign, Helium: Solid-liquid interfaces,Surf. Sci. Rep. 5:87–143 (1985).

    Google Scholar 

  10. J. Landau, S. G. Lipson, L. M. Määttänen, L. S. Balfour, and D. O. Edwards, Interface between superfluid and solid4He,Phys. Rev. Lett. 45:31–35 (1980).

    Google Scholar 

  11. P. E. Wolf, S. Balibar, and F. Gallet, Experimental observation of a third roughening transition on hep4He crystals,Phys. Rev. Lett. 51:1366–1369 (1983).

    Google Scholar 

  12. H. van Beijeren and I. Nolden, The roughening transition, inTopics in Current Physics, Vol. 43, W. Schommers and P. von Blackenhagen, eds. (Springer, Berlin, 1987), pp. 259–300.

    Google Scholar 

  13. C. Rottman and M. Wortis, Statistical mechanics of equilibrium crystal shapes: Interfacial phase diagrams and phase transitions,Phys. Rep. 103:59–79 (1984).

    Google Scholar 

  14. R. K. P. Zia, Anisotropic surface tension and equilibrium crystal shapes, inProgress in Statistical Mechanics, C. K. Hu, ed. (World Scientific, Singapore, 1988), pp. 303–357.

    Google Scholar 

  15. W. K. Burton, N. Cabrera, and F. C. Grank, The growth of crystals and the equilibrium structure of their surfaces,Phil. Trans. R. Soc. 243A:40–359 (1951).

    Google Scholar 

  16. R. L. Dobrushin, R. Kotecký, and S. Shlosman,The Wulff Construction: A Global Shape from Local Interactions (AMS, Providence, Rhode Island, 1992).

    Google Scholar 

  17. G. Gallavotti, Instabilities and phase transitions in the Ising model. A review,Nuovo Cimento 2:133–169 (1972).

    Google Scholar 

  18. H.-O. Georgii,Gibbs Measures and Phase Transitions (Walter de Gruyter, Berlin, 1988).

    Google Scholar 

  19. M. Aizenman, S. Goldstein, and J. L. Lebowitz, Conditional equilibrium and the equivalence of microcanonical and grandcanonical ensembles in the thermodynamic limit,Commun. Math. Phys. 62:279–302 (1978).

    Google Scholar 

  20. R. L. Dobrushin and B. Tirozzi, The central limit theorem and the problem of equivalence of ensembles,Commun. Math. Phys. 54:173–192 (1977).

    Google Scholar 

  21. K. M. Halfina, The limiting equivalence of the canonical and grand canonical ensemble (low density case),Mat. Sb. 80(122):3–51 (1969) [Math. USSR Sb. 9:1–52 (1969)].

    Google Scholar 

  22. R. A. Minlos and A. Haitov, Limiting equivalence of thermodynamic ensembles in case of one-dimensional system,Tr. Mosk. Mat. Obshch. 32:147–186 (1975) [Trans. Mosc. Math. Soc. 32:143–180 (1975)].

    Google Scholar 

  23. R. L. Thompson,Equilibrium States in Thin Energy Shells (Memoirs of the American Mathematical Society, Vol. 150, 1974).

  24. H.-O. Georgii,Canonical Gibbs Measures (Springer-Verlag, Berlin).

  25. R. A. Minlos and Ja. G. Sinai, The phenomenon of “phase separation” at low temperatures in some lattice models of a gas I,Mat. Sb. 73:375–448 (1967) [Math. USSR Sb. 2:335–395 (1967)].

    Google Scholar 

  26. R. A. Minlos and Ja. G. Sinai, The phenomenon of “phase separation” at low temperatures in some lattice models of a gas II,Tr. Mosk. Mat. Obshch. 19:113–178 (1968) [Trans. Mosc. Math. Soc. 19:121–196 (1968)].

    Google Scholar 

  27. J. E. Taylor, Some crystalline variational techniques and results,Astŕisque 154–155:307–320 (1987).

    Google Scholar 

  28. C. E. Pfister, Large deviations and phase separation in the two-dimensional Ising model,Helv. Phys. Acta 64:953–1054 (1991).

    Google Scholar 

  29. R. Kotecký and C. Pfister, in preparation.

  30. R. L. Dobrushin, Gibbs state describing coexistence of phases for a three-dimensional Ising model,Teor. Ver. Pril. 17:619–639 (1972) [Theor. Prob. Appl. 17:582–600 (1972)].

    Google Scholar 

  31. P. Holický, R. Kotecký, and M. Zahradník, Rigid interfaces for lattice models at low temperatures,J. Stat. Phys. 50:755–812 (1988).

    Google Scholar 

  32. G. Gallavotti, The phase separation line in the two-dimensional Ising model,Commun. Math. Phys. 27:103–136 (1972).

    Google Scholar 

  33. M. Aizenman, Instability of phase coexistence and translation invariance in two dimensions,Phys. Rev. Lett. 43:407–109 (1979).

    Google Scholar 

  34. M. Aizenman, Translation invariance and instability of phase coexistence in the two dimensional Ising system,Commun. Math. Phys. 73:83–94 (1980).

    Google Scholar 

  35. Y. Higuchi, On the absence of non-translationally invariant Gibbs states for the two-dimensional Ising system,Rigorous Results in Statistical Mechanics and Quantum Field Theory, J. Fritz, J. L. Lebowitz, and D. Szász, eds. (North-Holland, Amsterdam, 1982), pp. 517–534.

    Google Scholar 

  36. R. L. Dobrushin and S. B. Shlosman,The problem of translation invariance of Gibbs fields at low temperatures, Sov. Sci. Rev. Sect. Math. Phys. C5:53–185 (1985).

    Google Scholar 

  37. D. B. Abraham and P. Reed, Diagonal interface in the two-dimensional Ising ferromagnet,J. Phys. A: Math. Gen. 10:L121–123 (1977).

    Google Scholar 

  38. J. E. Avron, H. van Beijeren, L. S. Schulman, and R. K. P. Zia, Roughening transition, surface tension and equilibrium droplet shapes in a two-dimensional Ising system,J. Phys. A: Math. Gen. 15:L81–86 (1982).

    Google Scholar 

  39. J. De Coninck, F. Dunlop, and V. Rivasseau, On the microscopic validity of the Wulff construction and of the generalized Young equation,Commun. Math. Phys. 121:401–419 (1989).

    Google Scholar 

  40. K. Alexander, J. T. Chayes, and L. Chayes, The Wulff construction and asymptotics of the finite cluster distribution for two-dimensional Bernoulli percolation,Commun. Math. Phys. 131:1–50 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobrushin, R.L., Kotecký, R. & Shlosman, S.B. A microscopic justification of the Wulff construction. J Stat Phys 72, 1–14 (1993). https://doi.org/10.1007/BF01048037

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01048037

Key words

Navigation