Skip to main content
Log in

Critical dynamics of cluster algorithms in the dilute Ising model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Autocorrelation times for thermodynamic quantities atT C are calculated from Monte Carlo simulations of the site-diluted simple cubic Ising model, using the Swendsen-Wang and Wolff cluster algorithms. Our results show that for these algorithms the autocorrelation timesdecrease when reducing the concentration of magnetic sites from 100% down to 40%. This is of crucial importance when estimating static properties of the model, since the variances of these estimators increase with autocorrelation time. The dynamical critical exponents are calculated for both algorithms, observing pronounced finite-size effects in the energy autocorrelation data for the algorithm of Wolff. We conclude that, when applied to the dilute Ising model, cluster algorithms become even more effective than local algorithms, for whichincreasing autocorrelation times are expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. H. Swendsen and J. S. Wang, Nonuniversal critical dynamics in Monte Carlo simulations,Phys. Rev. Lett. 58:86–88 (1987).

    Google Scholar 

  2. U. Wolff, Comparison between cluster Monte Carlo algorithms in the Ising model,Phys. Lett. B 228:379–382 (1989).

    Google Scholar 

  3. P. Tamayo, R. C. Brower, and W. Klein, Single-cluster Monte Carlo dynamics for the Ising model,J. Stat. Phys. 58:1083–1094,60:899 (1990).

    Google Scholar 

  4. P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena,Rev. Mod. Phys. 49:435–479 (1977).

    Google Scholar 

  5. M. D'Onorio De Meo, D. W. Heermann, and K. Binder, Monte Carlo studies of the Ising model phase transition in terms of the percolation transition of physical clusters,J. Stat. Phys. 60:585–618 (1990).

    Google Scholar 

  6. W. Klein, T. Ray, and P. Tamayo, Scaling ansatz for Swendsen-Wang dynamics,Phys. Rev. Lett. 62:163–165 (1989).

    Google Scholar 

  7. J. S. Wang, Critical dynamics of the Swendsen-Wang algorithm in the three-dimensional Ising model,Physica A 164:240–244 (1990).

    Google Scholar 

  8. D. W. Heermann and A. N. Burkitt, System size dependence of the autocorrelation time for the Swendsen-Wang Ising model,Physica A 162:210–214 (1990).

    Google Scholar 

  9. T. S. Ray, P. Tamayo, and W. Klein, Mean-field study of the Swendsen-Wang dynamics,Phys. Rev. A 39:5949–5953 (1989).

    Google Scholar 

  10. P. Tamayo and W. Klein, Critical dynamics and global conservation laws,Phys. Rev. Lett. 63:2757–2759 (1989).

    Google Scholar 

  11. U. Wolff, Critical slowing down, in LATTICE '89 Symposium on Lattice Field Theory, Capri, Italy; Bielefeld Preprint BI-TP 89/35 (November 1989).

  12. A. D. Sokal, New numerical algorithms for critical phenomena, inComputer Studies in Condensed Matter Physics (Springer, Berlin, 1988), pp. 6–18.

    Google Scholar 

  13. J. S. Wang and R. H. Swendsen, Cluster Monte Carlo algorithms,Physica A 167:565–579 (1990).

    Google Scholar 

  14. M. B. Priestley,Spectral Analysis and Time Series (Academic Press, London, 1981).

    Google Scholar 

  15. N. Madras and A. D. Sokal, The Pivot algorithm: A highly efficient Monte Carlo method for the self-avoiding walk,J. Stat. Phys. 50:109–186 (1988).

    Google Scholar 

  16. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,Numerical Recipes in C: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1988).

    Google Scholar 

  17. E. Stanley,Introduction to Phase Transitions and Critical Phenomena (Clarendon Press, Oxford, 1971).

    Google Scholar 

  18. A. Hankey and H. E. Stanley, Systematic application of generalized homogeneous functions to static scaling, dynamic scaling and universality,Phys. Rev. B 6:3515–3542 (1972).

    Google Scholar 

  19. M. N. Barber, Finite-size scaling, inPhase Transitions and Critical Phenomena, Vol. 8 (Academic Press, London, 1983).

    Google Scholar 

  20. S. Wansleben and D. P. Landau, Dynamical critical exponent of the 3D Ising model,J. Appl. Phys. 61:3968–3970 (1987).

    Google Scholar 

  21. S. Wansleben and D. P. Landau, Monte Carlo investigation of critical dynamics in the 3D Ising model,Phys. Rev. B 43:6006–6014 (1991).

    Google Scholar 

  22. B. I. Halperin, Rigorous inequalities for the spin-relaxation function in the kinetic Ising model,Phys. Rev. B 8:4437–4440 (1973).

    Google Scholar 

  23. X. J. Li and A. D. Sokal, Rigorous lower bound on the dynamic critical exponents of the Swendsen-Wang algorithm,Phys. Rev. Lett. 63:827–830 (1989).

    Google Scholar 

  24. S. Kirkpatrick and E. Stoll, A very fast shift-register sequence random number generator,J. Computational Phys. 40:517–526 (1981).

    Google Scholar 

  25. J. C. Le Guillou and J. Zinn-Justin, Critical exponents from field theory,Phys. Rev. B 21:3976–3998 (1980).

    Google Scholar 

  26. J. S. Wang and D. Chowdhury, The critical behaviour of the three-dimensional dilute Ising model: Universality and the Harris criterion,J. Phys. (Paris)50:2905 (1989).

    Google Scholar 

  27. G. Jug, Critical behaviour of disordered spin systems in two and three dimensions,Phys. Rev. B 27:609–612 (1983).

    Google Scholar 

  28. I. O. Mayer, Critical exponents of the dilute Ising model from four-loop expansions,J. Phys. A 22:2815–2823 (1989).

    Google Scholar 

  29. A. Coniglio, Thermal phase transition of the dilutes-state Potts andn-vector models at the percolation threshold,Phys. Rev. Lett. 46:250–253 (1981).

    Google Scholar 

  30. J. Adler, Y. Meir, A. Aharony, and A. B. Harris, Series study of percolation moments in general dimension,Phys. Rev. Lett. 46:250–253 (1981).

    Google Scholar 

  31. R. B. Stinchcombe, Dilute magnetism, inPhase Transitions and Critical Phenomena, Vol. 7 (Academic Press, London, 1983).

    Google Scholar 

  32. H. O. Heuer, Dynamic scaling of disordered Ising systems, Preprint, 25.09.1992.

  33. H. O. Heuer, Critical slowing down in local dynamics simulation,J. Phys. A 25:L567–L573 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hennecke, M., Heyken, U. Critical dynamics of cluster algorithms in the dilute Ising model. J Stat Phys 72, 829–844 (1993). https://doi.org/10.1007/BF01048034

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01048034

Key words

Navigation