Skip to main content
Log in

Phase coexistence in partially symmetricq-state models

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider a lattice model whose spins may assume a finite numberq of values. The interaction energy between two nearest-neighbor spins takes on the valueJ 1 +J 2 orJ 2, depending on whether the two spins coincide or are different but coincide modulo q1, and it is zero otherwise. This model is a generalization of the Ashkin-Teller model and exhibits the multilayer wetting phenomenon, that is, wetting by one or two or three interfacial layers, depending on the number of phases in coexistence. While we plan to consider interface properties in such a case, here we study the phase diagram of the model. We show that for large values ofq 1 andq/q 1, it exhibits, according the value ofJ 2/J 1, either a unique first-order temperature-driven phase transition at some pointβ t whereq ordered phases coexist with the disordered one, or two transition temperatures β (1)t and β (2)t , where q1 partially ordered phases coexist with the ordered ones (β (1)t ) or with the disordered one (β (2)t ), or for a particular value ofJ 2/J 1 there is a unique transition temperature where all the previous phases coexist. Proofs are based on the Pirogov-Sinai theory: we perform a random cluster representation of the model (allowing us to consider noninteger values ofq 1 andq/q 1) to which we adapt this theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Dunlop, L. Laanait, A. Messager, S. Miracle-Sole, and J. Ruiz, Multilayer wetting in partially symmetric q-state models,J. Stat. Phys. 59:1383–1396 (1991).

    Google Scholar 

  2. Ya. G. Sinai,Theory of Phase Transitions: Rigorous Results (Pergamon Press, London, 1982).

    Google Scholar 

  3. J. Bricmont, K. Kuroda, and J. L. Lebowitz, First order phase transitions in lattice and continuous systems,Commun. Math. Phys. 101:501–538 (1985).

    Google Scholar 

  4. L. Laanait, A. Messager, S. Miracle-Sole, J. Ruiz, and S. Shlosman, Interfaces in the Potts model I: Pirogov-Sinai theory of the Fortuin-Kasteleyn representation,Commun. Math. Phys. 140:81–91 (1991).

    Google Scholar 

  5. C. M. Fortuin and P. W. Kasteleyn, On the random cluster model,Physica 57:536–564 (1972).

    Google Scholar 

  6. R. G. Edwards and A. D. Sokal, Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm,Phys. Rev. B 38:2009–2013 (1988).

    Google Scholar 

  7. R. H. Swendsen and J. S. Wang, Nonuniversal critical dynamics and Monte Carlo simulations,Phys. Rev. Lett. 58:86–89 (1987).

    Google Scholar 

  8. A. Benyoussef, L. Laanait, and M. Loulidi, More results on the Ashkin-Teller model, Preprint Marseille CPT-92/P.2655 (1992).

  9. P. M. C. de Oliviera and F. C. Sa Barreto, Renormalization group studies of the Ashkin-Teller model,J. Stat. Phys. 57:53–63 (1989).

    Google Scholar 

  10. C.-E. Pfister, Phase transitions in the Ashkin-Teller model,J. Stat. Phys. 29:113–116 (1982).

    Google Scholar 

  11. R. Kotecký and D. Preiss, An inductive approach to Pirogov-Sinai theory,Supp. Rend. Circ. Matem. Palermo II(3):161–164 (1984).

    Google Scholar 

  12. N. Masaif, Étude du modèle Z(q) partiellement symétrique, Diplôme de Troisième Cycle, Faculté des Sciences, Rabat, Morocco (1992).

    Google Scholar 

  13. M. Zahradník, An alternate version of Pirogov-Sinai theory,Commun. Math. Phys. 93:559–581 (1984).

    Google Scholar 

  14. C. Borgs and J. Imbrie, A unified approach to phase diagram in field theory and statistical mechanics,Commun. Math. Phys. 123:305–328 (1989).

    Google Scholar 

  15. C.-E. Pfister, Translation invariant equilibrium states of ferromagnetic Abelian lattice systems,Commun. Math. Phys. 86:375–390 (1982).

    Google Scholar 

  16. C.-E. Pfister, On the ergodic decomposition of Gibbs random fields for ferromagnetic Abelian lattice models,Ann. N. Y. Acad. Sci. 491:170–190 (1987).

    Google Scholar 

  17. M. Zahradník, Analitycity of low temperature phase diagrams of lattice spin models,J. Stat. Phys. 47:725–755 (1987).

    Google Scholar 

  18. J. De Coninck, A. Messager, S. Miracle-Sole, and J. Ruiz, A study of perfect wetting for Potts and Blume-Capel models with correlation inequalities,J. Stat. Phys. 52:45–60 (1988).

    Google Scholar 

  19. A. Messager, S. Miracle-Sole, J. Ruiz, and S. Shlosman, Interfaces in the Potts model II: Antonov's rule and rigidity of the order disorder interface,Commun. Math. Phys. 140:275–290 (1991).

    Google Scholar 

  20. R. Kotecký, L. Laanait, A. Messager, and J. Ruiz, Theq-state Potts model in the standard Pirogov-Sinai theory: Surface tensions and Wilson loops,J. Stat. Phys. 58:199–248 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from École Normale Supérieure de Rabat, B.P. 5118, Rabat, Morocco.

On leave from Centre de Physique Théorique, CNRS, Marseille, France.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laanait, L., Masaif, N. & Ruiz, J. Phase coexistence in partially symmetricq-state models. J Stat Phys 72, 721–736 (1993). https://doi.org/10.1007/BF01048030

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01048030

Key words

Navigation