Skip to main content
Log in

On phase separation in the spherical model of a ferromagnet: Quasiaverage approach

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The spherical model of a ferromagnet is investigated in the framework of the generalized quasiaverage approach where an external field positive in one half of a square lattice and negative in the other half is used. It is shown that in addition to the well-known critical point, a second one can be produced by the field. Although the main asymptotic of the free energy is analytic at this point, the next-to-leading asymptotic possesses a singularity here, as well as at the point where the free energy per site is nonanalytic. An order parameter of the model also has singularities at both critical points. The magnetization profile is studied at different scales. It is shown that (in an appropriate regime), below the new critical temperature the magnetization profile freezes, that is, becomes temperature independent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. B. Abraham and P. Reed, Interface profile of the Ising ferromagnet in two dimensions,Commun. Math. Phys. 49:35–46 (1976).

    Google Scholar 

  2. D. B. Abraham and M. A. Robert, Phase separation in the spherical model,J. Phys. A: Math. Gen. 12:L129–L132 (1979).

    Google Scholar 

  3. D. B. Abraham and M. A. Robert, Phase separation in the spherical model,J. Phys. A: Math. Gen. 13:2229–2245 (1980).

    Google Scholar 

  4. N. Angelescu and V. A. Zagrebnov, A generalized quasiaverage approach to the description of the limit states of then-vector Curie-Weiss ferromagnet,J. Stat. Phys. 41:323–334 (1985).

    Google Scholar 

  5. M. N. Barber, Finite-size scaling, inPhase Transition and Critical Phenomena, Vol. 8, C. Domb and J. L. Lebowitz, eds. (Academic Press, New York, 1983), Chapter 2.

    Google Scholar 

  6. M. N. Barber and M. E. Fisher, Critical phenomena in systems of finite thickness I. The spherical model,Ann. Phys. 77:1–78 (1973).

    Google Scholar 

  7. M. van den Berg, J. T. Lewis, and J. V. Pulè, A general theory of Bose-Einstein condensation,Helv. Phys. Acta 59:1271–1288 (1986).

    Google Scholar 

  8. T. H. Berlin and M. Kac, The spherical model of a ferromagnet,Phys. Rev. 86:821–835 (1952).

    Google Scholar 

  9. N. N. Bogoliubov,Lectures on Quantum Statistics, Vol. 2, Quasi-Averages (Gordon and Breach, New York, 1970).

    Google Scholar 

  10. J. G. Brankov and D. M. Danchev, On the limit Gibbs states of the spherical model.J. Phys. A: Math. Gen. 20:4901–4913 (1987).

    Google Scholar 

  11. J. G. Brankov, V. A. Zagrebnov, and N. S. Tonchev, Description of the limit Gibbs states for the Curie-Weiss-Ising model,Theor. Math. Phys. 66:72–80 (1986).

    Google Scholar 

  12. R. L. Dobrushin, Gibbs states describing coexistence of phases for a three-dimensional Ising model,Theory Prob. Appl. 17:582–600 (1972).

    Google Scholar 

  13. G. Gallavotti, The phase separation in the two-dimensional Ising model,Commun. Math. Phys. 27:103–136 (1972).

    Google Scholar 

  14. J. Gough, and J. V. Pulè, The spherical model of Bose-Einstein condensation,Helv. Phys. Acta. 66:17–52 (1993).

    Google Scholar 

  15. J. D. Gunton and M. J. Buckingham, Condensation of the ideal Bose gas as a cooperative transition,Phys. Rev. 166:152–158 (1968).

    Google Scholar 

  16. A. E. Ferdinand and M. E. Fisher, Bounded and inhomogeneous Ising models. I. Specific-heat anomaly of a finite lattice,Phys. Rev. 185:832–846 (1969).

    Google Scholar 

  17. H. O. Georgii,Gibbs Measures and Phase Transitions (de Gruyter, Berlin, 1988).

    Google Scholar 

  18. Y. Imry and S.-K. Ma, Random-field instability of the ordered state of continuous symmetry,Phys. Rev. Lett. 35:1399–1401 (1975).

    Google Scholar 

  19. H. J. F. Knops, Infinite spin dimensionality limit for nontranslationally invariant interactions,J. Math. Phys. 14:1918–1920 (1973).

    Google Scholar 

  20. V. A. Malyshev and R. A. Minlos,Gibbs Random Fields. The Method of Cluster Expansions (Reidel, Dordrecht, 1991).

    Google Scholar 

  21. S. A. Molchanov and Ju. N. Sudarev, Gibbs states in the spherical model,Sov. Math. Dokl. 16:1254–1257 (1975).

    Google Scholar 

  22. L. A. Pastur, Disordered spherical model,J. Stat. Phys. 27:119–151 (1982).

    Google Scholar 

  23. H. Van Beijeren, Interface sharpness in the Ising system,Commun. Math. Phys. 40:1–6 (1975).

    Google Scholar 

  24. C. C. Yan and G. H. Wannier, Observation on the spherical model of a ferromagnet,J. Math. Phys. 6:1833–1838 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patrick, A.E. On phase separation in the spherical model of a ferromagnet: Quasiaverage approach. J Stat Phys 72, 665–701 (1993). https://doi.org/10.1007/BF01048028

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01048028

Key words

Navigation