Skip to main content
Log in

Dissipation and noise immunity in computation, measurement, and communication

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We have known for almost three decades that the steps in a computer that require a minimal energy expenditure, that cannot be avoided by any means, are those that discard information. For more than half that period we have known that such steps are not essential; computation can be carried out through a sequence of logical 1:1 mappings. Computation, therefore, can be carried out with arbitrarily little dissipation per step, if done sufficiently slowly. Much more recently it has been emphasized that measurement and communication are similar to computation; it is only the information-discarding steps that have a lower bound on the dissipation. Such steps are not required in communication. In measurement, as shown by Bennett, they only become essential when we reset the meter for its next (or first) use. This paper is not a detailed exposition of all this, but only an annotated guide to the existing literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Maxwell,Theory of Heat (Longmans, Green, London, 1871), p. 308.

    Google Scholar 

  2. C. E. Shannon,Bell Syst. Techn. J. 27:397, 623 (1984).

    Google Scholar 

  3. M. D. Sturge, inNo Way, P. J. Davis and D. Park, eds. (Freeman, New York, 1987), p. 111.

    Google Scholar 

  4. P. W. Smith,Phil. Trans. R. Soc. Lond. A 313:349 (1984); J. D. Meindl,IEEE Trans. Elect. Devices ED-31:1555 (1984); J. D. Meindl, inCutting Edge Technologies (National Academy Press, Washington, D.C., 1984), p. 5.

    Google Scholar 

  5. L. B. Levitin,Int. J. Theor. Phys. 21:299 (1982); H. J. Bremermann,Int. J. Theor. Phys. 21:203 (1982).

    Google Scholar 

  6. R. Landauer,Int. J. Theor. Phys. 21:283 (1982).

    Google Scholar 

  7. R. Landauer,Found. Phys. 16:551 (1986).

    Google Scholar 

  8. L. Brillouin,Science and Information Theory (Academic Press, New York, 1956).

    Google Scholar 

  9. R. Landauer,IBM J. Res. Dev. 5:183 (1961).

    Google Scholar 

  10. C. H. Bennett,IBM J. Res. Dev. 17:525 (1973).

    Google Scholar 

  11. J. A. Wheeler and W. H. Zurek, eds.,Quantum Theory and Measurement (Princeton University Press, Princeton, New Jersey, 1983), p. 782.

    Google Scholar 

  12. K. Obermayer, G. Mahler, and H. Haken,Phys. Rev. Lett. 58:1792 (1987); J. Maddox,Nature 327:97 (1987); S. Hawking,New Sci. 115:46 (July 9, 1987); O. Costa de Beauregard,Found. Phys., to be published; J. Rothstein, inPerformance Limits in Communication, J. K. Skwirzynski, ed. (Kluwer Academic, Dordrecht, in press); W. Porod, R. O. Grondin, D. K. Ferry, and G. Porod,Phys. Rev. Lett. 52:232 (1984); W. Porod, R. O. Grondin, D. K. Ferry, and G. Porod,Phys. Rev. Lett. 53:1206 (1984); C. Mead and L. Conway,Introduction to VLSI Systems (Addison-Wesley, Reading, Massachusetts, 1980), Chapter 9; H. M. Hastings and S. Waner,Biosystems 17:241 (1985); E. M. Drogin,Defense Electron.1986 (March):31.

    Google Scholar 

  13. J. von Neumann,Non-linear capacitance or inductance switching, amplifying and memory organs, U.S. Patent 2,815,488; E. Goto,J. Elec. Commun. Eng. Jpn. 38:770 (1955).

  14. R. W. Keyes and R. Landauer,IBM J. Res. Dev. 14:152 (1970).

    Google Scholar 

  15. K. K. Likharev,Int. J. Theor. Phys. 21:311 (1982); K. K. Likharev, S. V. Rylov, and V. K. Semenov,IEEE Trans. Magn. 21:947 (1985).

    Google Scholar 

  16. R. Landauer, inDer Informationsbegriff in Technik und Wissenschaft, O. G. Folberth, C. Hackl, eds. (R. Oldenbourg, Munich, 1986), p. 139.

    Google Scholar 

  17. D. M. Greenberger, ed.,New Techniques and Ideas in Quantum Measurement Theory (New York Academy of Science, 1986); M. Roth and A. Inomata, eds.,Fundamental Questions in Quantum Mechanics (Gordon and Breach, New York, 1986).

  18. C. H. Bennett,Int. J. Theor. Phys. 21:905 (1982); C. H. Bennett,Sci. Am. 255:108 (1987); C. H. Bennett,IBM J. Res. Dev. 32:16 (1988).

    Google Scholar 

  19. E. E. Daub,Hist. Phil. Sci. 1:213 (1970).

    Google Scholar 

  20. O. Costa de Beauregard,Time, The Physical Magnitude (Reidel, Dordrecht, 1987), p. 153.

    Google Scholar 

  21. R. Landauer, inSignal Processing, S. Haykin, ed. (Prentice-Hall, Englewood Cliffs, New Jersey, in press).

  22. H. Marko,Kybernetik 2:274 (1965); F. T. S. Yu, inOptics and Information Theory (Wiley, New York, 1976); J. R. Pierce, E. C. Posner, and R. Rodemich,IEEE Trans. Inf. Theory 27:61 (1981).

    Google Scholar 

  23. R. Landauer,Appl. Phys. Lett. 51:2056 (1987).

    Google Scholar 

  24. R. Landauer,IEEE Spectrum 4:105 (1967).

    Google Scholar 

  25. R. Landauer,Z. Phys. B 68:217 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landauer, R. Dissipation and noise immunity in computation, measurement, and communication. J Stat Phys 54, 1509–1517 (1989). https://doi.org/10.1007/BF01044731

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01044731

Key words

Navigation