Skip to main content
Log in

Classical and quantum noise in nonlinear optical systems

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In quantum optics noise plays an important role, since many of the nonlinear optical systems are quite sensitive to the subtle influences of weak random perturbations, being either classical of quantum mechanical in nature. We discuss the origin of quantum noise emerging from the reversible or the irreversible part of the dynamics and compare it with the properties of purely classical fluctuations. These general features are illustrated by a number of physical examples, such as the laser with loss or gain noise, nonlinear optical devices, and the phenomenon of quantum jumps. These processes have been chosen mainly to illustrate the different aspects of noise, but also because, to a large extent, they can be described in analytical terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Graham and H. Haken,Z. Phys. 237:31 (1970).

    Google Scholar 

  2. V. DeGiorgio and M. O. Scully,Phys. Rev. A 2:1170 (1970).

    Google Scholar 

  3. R. J. Glauber, inProceedings Symposium on Modern Optics (Polytechnic Press, Brooklyn, New York, 1967).

    Google Scholar 

  4. P. L. Kelley and W. H. Kleiner,Phys. Rev. 136:316 (1964).

    Google Scholar 

  5. L. Mandel,Opt. Lett. 4:205 (1979).

    Google Scholar 

  6. R. J. Cook,Phys. Rev. A 23:1243 (1981).

    Google Scholar 

  7. R. J. Glauber,Phys. Rev. 131:2766 (1963).

    Google Scholar 

  8. E. C. G. Sudarshan,Phys. Rev. Lett. 10:277 (1963).

    Google Scholar 

  9. R. J. Glauber, inAnn. N. Y. Acad. Sci. 480:336 (1986).

    Google Scholar 

  10. H. J. Carmichael and D. F. Walls,J. Phys. B 9:1199 (1976).

    Google Scholar 

  11. H. J. Kimble, M. Dagenais, and L. Mandel,Phys. Rev. Lett. 39:691 (1977).

    Google Scholar 

  12. M. Dagenais and L. Mandel,Phys. Rev. A 18:2217 (1978).

    Google Scholar 

  13. F. Dietrich and H. Walther,Phys. Rev. Lett. 58:203 (1987).

    Google Scholar 

  14. L. Mandel,Opt. Lett. 4:205 (1979).

    Google Scholar 

  15. R. Short and L. Mandel,Phys. Rev. Lett. 51:384 (1983).

    Google Scholar 

  16. D. F. Walls,Nature 306:141 (1983).

    Google Scholar 

  17. R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley,Phys. Rev. Lett. 55:2409 (1985).

    Google Scholar 

  18. R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls,Phys. Rev. Lett. 57:691 (1986).

    Google Scholar 

  19. P. D. Drummond and C. W. Gardiner,J. Phys. A 13:2353 (1980).

    Google Scholar 

  20. C. W. Gardiner,Handbook of Stochastic Methods (Springer Series in Synergetics, New York, Vol. 13, 1983).

  21. H. Haken, inEncyclopedia of Physics, Vol. XXV/2c (Springer-Verlag, Berlin, 1970).

    Google Scholar 

  22. H. Risken, inProgress in Optics, Vol. 8, E. Wolf, ed. (North-Holland, Amsterdam, 1970).

    Google Scholar 

  23. K. Kaminishi, R. Roy, R. Short, and L. Mandel,Phys. Rev. A 24:370 (1981).

    Google Scholar 

  24. R. Short, L. Mandel, and R. Roy,Phys. Rev. Lett. 49:647 (1982).

    Google Scholar 

  25. R. Graham, M. Hoehnerbach, and A. Schenzle,Phys. Rev. Lett. 48:1396 (1982).

    Google Scholar 

  26. A. Schenzle and H. Brand,Phys. Lett. 69A:313 (1979).

    Google Scholar 

  27. A. Schenzle and H. Brand,Phys. Rev. A 20:1628 (1979).

    Google Scholar 

  28. A. Schenzle, inProceedings of the International Meeting on Instabilities and Dynamics of Lasers and Nonlinear Optical systems, R. W. Boyd, M. G. Raymer, and L. M. Narducci (Cambridge University Press, Cambridge, 1986).

    Google Scholar 

  29. A. Schenzle and R. Graham,Phys. Lett. 98A:319 (1983).

    Google Scholar 

  30. A. Schenzle and T. Tel,Phys. Rev. A 32:596 (1985).

    Google Scholar 

  31. P. D. Drummond, K. J. McNeil, and D. F. Walls,Opt. Acta 28:211 (1981).

    Google Scholar 

  32. M. Doerfle and A. Schenzle,Z. Phys. 65B:113 (1986).

    Google Scholar 

  33. H. G. Dehmelt,Bull. Am. Soc. 20:60 (1975).

    Google Scholar 

  34. H. G. Dehmelt,IEEE Trans. Instrum. Meas. 31:83 (1982).

    Google Scholar 

  35. A. Schenzle, R. G. DeVoe, and R. G. Brewer,Phys. Rev. A 33:2127 (1986).

    Google Scholar 

  36. A. Schenzle and R. G. Brewer,Phys. Rev. A 34:3127 (1986).

    Google Scholar 

  37. P. Zoller, M. Marthe, and D. F. Walls,Phys. Rev. A 35:198 (1987).

    Google Scholar 

  38. D. T. Pegg, R. Loudon, and P. L. Knight,Phys. Rev. A 33:4085 (1986).

    Google Scholar 

  39. W. Nagourney, J. Sandberg, and H. G. Dehmelt,Phys. Rev. Lett. 56:2727 (1986).

    Google Scholar 

  40. J. C. Berquist, R. G. Hulet, W. M. Itano, and D. J. Wineland,Phys. Rev. Lett. 57:1699 (1986).

    Google Scholar 

  41. T. Sauter, W. Neuhauser, R. Blatt, and P. E. Toschek,Phys. Rev. Lett. 57:1469 (1986).

    Google Scholar 

  42. T. Sauter, R. Blatt, W. Neuhauser, and P. E. Toschek,Opt. Commun. 60:287 (1986).

    Google Scholar 

  43. M. Merz and A. Schenzle, to be published.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schenzle, A. Classical and quantum noise in nonlinear optical systems. J Stat Phys 54, 1243–1288 (1989). https://doi.org/10.1007/BF01044715

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01044715

Key words

Navigation