Skip to main content
Log in

Negative-viscosity lattice gases

  • Short Communications
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A new irreversible collision rule is introduced for lattice-gas automata. The rule maximizes the flux of momentum in the direction of the local momentum gradient, yielding a negative shear viscosity. Numerical results in 2D show that the negative viscosity leads to the spontaneous ordering of the velocity field, with vorticity resolvable down to one lattice-link length. The new rule may be used in conjunction with previously proposed collision rules to yield a positive shear viscosity lower than the previous rules provide. In particular, Poiseuille flow tests demonstrate a decrease in viscosity by more than a factor of 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. U. Frisch, B. Hasslacher, and Y. Pomeau,Phys. Rev. Lett. 56:1505 (1986).

    Google Scholar 

  2. U. Frisch, D. d'Humières, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.-P. Rivet,Complex Systems 1:648 (1987).

    Google Scholar 

  3. G. Zanetti, The hydrodynamics of lattice-gas automata, University of Chicago preprint.

  4. S. Wolfram,J. Stat. Phys. 45:471 (1986).

    Google Scholar 

  5. M. Hénon,Complex Systems 1:475 (1987).

    Google Scholar 

  6. M. Hénon,Complex Systems 1:762 (1987).

    Google Scholar 

  7. M. Hénon, Optimization of collision rules in the FCHC lattice gas, and addition of rest particles, in R. Monaco, ed.,Discrete Kinetic Theory, Lattice Gas Dynamics, and Foundations of Hydrodynamics, p. 146–159 (World Scientific, Singapore, 1989).

    Google Scholar 

  8. D. d'Humières, P. Lallemand, and U. Frisch,Europhys. Lett. 2:291 (1986).

    Google Scholar 

  9. J.-P. Rivet, M. Hénon, U. Frisch, and D. d'Humières,Europhys. Lett. 7:231 (1988).

    Google Scholar 

  10. D. H. Rothman and J. M. Keller,J. Stat. Phys. 52:1119 (1988).

    Google Scholar 

  11. D. H. Rothman and S. Zaleski, Spinodal decomposition in a lattice-gas automaton,Journal de Physique (in press).

  12. D. d'Humières and P. Lallemand,Complex System 1:599 (1987).

    Google Scholar 

  13. L. D. Landau and E. M. Lifshitz,Fluid Mechanics (Pergamon Press, New York, 1959).

    Google Scholar 

  14. L. Kadanoff, G. McNamara, and G. Zanetti,Complex Systems 1:790 (1987).

    Google Scholar 

  15. B. Dubrulle,Complex Systems 2:577 (1988).

    Google Scholar 

  16. B. Dubrulle, U. Frisch, M. Hénon, J.-P. Rivet, Low-viscosity lattice gases, preprint.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rothman, D.H. Negative-viscosity lattice gases. J Stat Phys 56, 517–524 (1989). https://doi.org/10.1007/BF01044449

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01044449

Key words

Navigation