Skip to main content
Log in

Ergodic properties and thermodynamic behavior of elementary reversible cellular automata. I. Basic properties

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This is the first part of a series devoted to the study of thermodynamic behavior of large dynamical systems with the use of a family of fully-discrete and conservative models named elementary reversible cellular automata (ERCAs). In this paper, basic properties such as conservation laws and phase space structure are investigated in preparation for the later studies. ERCAs are a family of one-dimensional reversible cellular automata having two Boolean variables on each site. Reflection and Boolean conjugation symmetries divide them into 88 equivalence classes. For each rule, additive conserved quantities written in a certain form are regarded as a kind of energy, if they exist. By the aid of the discreteness of the variables, every ERCA satisfies the Liouville theorem or the preservation of phase space volume. Thus, if an energy exists in the above sense, statistical mechanics of the model can formally be constructed. If a locally defined quantity is conserved, however, it prevents the realization of statistical mechanics. The existence of such a quantity is examined for each class and a number of rules which have at least one energy but no local conservation laws are selected as hopeful candidates for the realization of thermodynamic behavior. In addition, the phase space structure of ERCAs is analyzed by enumerating cycles exactly in the phase space for systems of comparatively small sizes. As a result, it is revealed that a finite ERCA is not ergodic, that is, a large number of orbits coexist on an energy surface. It is argued that this fact does not necessarily mean the failure of thermodynamic behavior on the basis of an analogy with the ergodic nature of infinite systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Lebowitz, inTransport Phenomena, G. Kirczenow and J. Marro, eds. (Springer-Verlag, Berlin, 1973).

    Google Scholar 

  2. V. I. Arnol'd,Russ. Math. Surv. 18:9, 85 (1963).

    Google Scholar 

  3. S. Goldstein, J. L. Lebowitz, and M. Aizenman, inDynamical Systems, Theory and Applications, J. Moser, ed. (Springer-Verlag, Berlin, 1975).

    Google Scholar 

  4. I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai,Ergodic Theory (Springer-Verlag, New York, 1982).

    Google Scholar 

  5. O. E. Lanford, III, and J. L. Lebowitz, inDynamical Systems, Theory and Applications, J. Moser, ed. (Springer-Verlag, Berlin, 1975).

    Google Scholar 

  6. S. Takesue,Phys. Rev. Lett. 59:2499 (1987).

    Google Scholar 

  7. S. Wolfram, ed.,Theory and Application of Cellular Automata (World Scientific, Singapore, 1986).

    Google Scholar 

  8. Y. Pomeau,J. Phys. A 17:L415 (1984).

    Google Scholar 

  9. R. S. MacKay and J. D. Meiss, eds.,Hamiltonian Dynamical Systems (Adam Hilger, Bristol, 1987).

    Google Scholar 

  10. M. Creutz,Ann. Phys. 167:62 (1986).

    Google Scholar 

  11. G. Vichniac,Physica 10D:117 (1984).

    Google Scholar 

  12. G. Vichniac, inDisordered Systems and Biological Organization, B. Bienenstock, F. Fogelman Soulie, and G. Weissbuch, eds. (Springer-Verlag, Berlin, 1986).

    Google Scholar 

  13. H. J. Herrmann,J. Stat. Phys. 45:145 (1986); U. M. S. Costa and H. J. Herrmann,J. Stat. Phys. 47:597 (1987); H. J. Herrmann, H. O. Carmesin, and D. Stauffer,J. Phys. A 20:4939 (1987); M. Schulte, W. Stiefelhagen, and E. S. Demme,J. Phys. A 20:L1023 (1987); W. M. Lang and D. Stauffer,J. Phys. A 20:5413 (1987); H. E. Stanley, D. Stauffer, J. Kertész, and H. J. Herrmann,Phys. Rev. Lett. 59:2326 (1987); R. Toral,J. Phys. A 21:L315 (1988); R. C. Desai and D. Stauffer,J. Phys. A 21:L59 (1988).

    Google Scholar 

  14. N. Sourlas,Europhys. Lett. 6:561 (1988).

    Google Scholar 

  15. Y. Pomeau and G. Y. Vichniac,J. Phys. A 21:3297 (1988).

    Google Scholar 

  16. J. Hardy and Y. Pomeau,J. Math. Phys. 13:1042 (1972); J. Hardy, Y. Pomeau, and O. de Pazzis,J. Math. Phys. 14:1746 (1973); J. Hardy, O. de Pazzis, and Y. Pomeau,Phys. Rev. A 13:1949 (1976); U. Frisch, B. Hasslacher, and Y. Pomeau,Phys. Rev. Lett. 56:1505 (1986); D. d'Humières, P. Lallemand, and U. Frisch,Europhys. Lett. 2:291 (1986); S. Wolfram,J. Stat. Phys. 45:471 (1986); L. P. Kadanoff, G. R. McNamara, and G. Zanetti,Complex Systems 1:791 (1987); B. Chopard and M. Droz,Phys. Lett. A 126:476 (1988); A. J. C. Ladd, M. E. Colvin, and D. Frenkel,Phys. Rev. Lett. 60:975 (1988); S. Succi, P. Santangelo, and R. Benzi,Phys. Rev. Lett. 60:2738 (1988).

    Google Scholar 

  17. O. E. Lanford, III, inDynamical Systems, Theory and Applications, J. Moser, ed. (Springer-Verlag, Berlin, 1975).

    Google Scholar 

  18. S. Wolfram,Rev. Mod. Phys. 55:601 (1983).

    Google Scholar 

  19. G. Cosenza and F. Neri,Physica 27D:357 (1987).

    Google Scholar 

  20. E. Goles and G. Y. Vichniac,J. Phys. A 19:L961 (1986).

    Google Scholar 

  21. N. Margolus,Physica 10D:81 (1984).

    Google Scholar 

  22. S. Wolfram,Physica 10D:1 (1984).

    Google Scholar 

  23. O. Martin, A. M. Odlyzko, and S. Wolfram,Commun. Math. Phys. 93:219 (1984).

    Google Scholar 

  24. M. Henon, inChaotic Behavior of Deterministic Systems (North-Holland, Amsterdam, 1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takesue, S. Ergodic properties and thermodynamic behavior of elementary reversible cellular automata. I. Basic properties. J Stat Phys 56, 371–402 (1989). https://doi.org/10.1007/BF01044442

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01044442

Key words

Navigation