Skip to main content
Log in

Entropy production and nonequilibrium stationarity in quantum dynamical systems. Physical meaning of van Hove limit

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

With aid of the so-called dilation method, a concise formula is obtained for the entropy production in the algebraic formulation of quantum dynamical systems. In this framework, the initial ergodic state of an external force system plays a pivotal role in generating dissipativity as a conditional expectation. The physical meaning of van Hove limit is clarified through the scale-changing transformation to control transitions between microscopic and macroscopic levels. It plays a crucial role in realizing the macroscopic stationarity in the presence of microscopic fluctuations as well as in the transition from non-Markovian (groupoid) dynamics to Markovian dissipative processes of state changes. The extension of the formalism to cases with spatial and internal inhomogeneity is indicated in the light of the groupoid dynamical systems and noncommutative integration theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Kubo,J. Phys. Soc. Japan 12:570 (1957).

    Google Scholar 

  2. N. G. van Kampen,Phys. Norveg. 5:279 (1971).

    Google Scholar 

  3. R. Kubo, M. Toda, and N. Hashitsume,Statistical Physics, Vol. 2 (Springer-Verlag, Berlin, 1985).

    Google Scholar 

  4. I. Ojima, H. Hasegawa, and M. Ichiyanagi,J. Stat. Phys. 50:633 (1988).

    Google Scholar 

  5. I. Ojima, inQuantum Field Theory, F. Mancini, ed. (Elsevier, 1986), p. 443; inProceedings 2nd International Symposium Foundations of Quantum Mechanics (Tokyo, 1986), M. Namikiet al., eds. (Physical Society of Japan, Tokyo, 1987), p. 91.

  6. J. Lebowitz,Phys. Rev. 114:1192 (1959); H. Hasegawa, T. Nakagomi, M. Mabuchi, and K. Kondo,J. Stat. Phys. 23:281 (1980).

    Google Scholar 

  7. T. Masuda,Publ. RIMS Kyoto Univ. 20:929, 959 (1984).

    Google Scholar 

  8. A. Connes, inLecture Notes in Mathematics, No. 725 (Springer-Verlag, Berlin, 1979), p. 19; J. Renault,Lecture Notes in Mathematics, No. 793 (Springer-Verlag, Berlin, 1980); J. Bellissard and D. Testard, preprint CPT-81/P.1311 (1981).

    Google Scholar 

  9. M. E. Mayer, inDifferential Geometrical Methods in Theoretical Physics, K. Bleuler, ed. (D. Reidel, Dordrecht, 1988).

    Google Scholar 

  10. R. Haag, N. M. Hugenholtz, and M. Winnink,Commun. Math. Phys. 5:215 (1967).

    Google Scholar 

  11. O. Bratteli and D. W. Robinson,Operator Algebras and Quantum Statistical Mechanics, Vol. 2 (Springer-Verlag, Berlin, 1981).

    Google Scholar 

  12. M. Ichiyanagi,J. Phys. Soc. Japan 55:2093 (1986).

    Google Scholar 

  13. H. Araki,Publ. RIMS, Kyoto Univ. 11:809 (1976);13:173 (1979); A. Uhlmann,Commun. Math. Phys. 54:21 (1977).

    Google Scholar 

  14. K. Yosida,Functional Analysis, 6th ed. (Springer-Verlag, Berlin, 1980).

    Google Scholar 

  15. J. Avron and B. Simon,Commun. Math. Phys. 82:101 (1981); J. Bellissard, R. Lima, and D. Testard, inMathematics + Physics: Lectres on Recent Results, Vol. 1, L. Streit, ed. (World Scientific, Singapore, 1985), and references cited therein.

    Google Scholar 

  16. N. Dunford and J. T. Schwartz,Linear Operators, Vol. I (Wiley-Interscience, New York, 1958); N. Bourbaki,Éléments de Mathématique, Espaces Vectoriels Topologiques, 2nd ed. (Hermann, Paris, 1966).

    Google Scholar 

  17. J. Bellissard, private communication (1987); C. Rickart,General Theory of Banach Algebras (Van Nostrand, New York, 1960).

  18. J. Bellissard, private communication (1987); J. S. Howland,Math. Ann. 207:315 (1974); K. Yajima,J. Math. Soc. Japan 29:729 (1977).

  19. L. van Hove,Physica 21:517 (1955).

    Google Scholar 

  20. L. van Hove,Physica 23:441 (1957).

    Google Scholar 

  21. E. B. Davies,Commun. Math. Phys. 39:91 (1974);Math. Ann. 219:147 (1976);Ann. Inst. Henri Poincaré 11:265 (1975).

    Google Scholar 

  22. V. Gorini, A. Frigerio, M. Verri, A. Kossakowski, and E. C. G. Sudarshan,Rep. Math. Phys. 13:149 (1978), and references cited therein.

    Google Scholar 

  23. K. Hepp and E. Lieb,Helv. Phys. Acta 46:573 (1973).

    Google Scholar 

  24. G. Mackey,Proc. Natl. Acad. Sci. USA 50:1184 (1963);Math. Ann. 166:187 (1966).

    Google Scholar 

  25. A. Connes,Proc. Symp. Pure Math. 38(Part 1):521 (1982).

    Google Scholar 

  26. J. Bellissard, inLecture Notes in Physics, No. 257 (Springer-Verlag, Berlin, 1986), p. 99.

    Google Scholar 

  27. M. Berry,Proc. R. Soc. Lond. A 392:45 (1984); B. Simon,Phys. Rev. Lett. 51:2167 (1983); P. Nelson and L. Alvarez-Gaumé,Commun. Math. Phys. 99:103 (1985).

    Google Scholar 

  28. R. L. Hudson and K. R. Parthasarathy,Commun. Math. Phys. 93:301 (1984); G. Parisi and Y.-S. Wu,Sci. Sin. 24:483 (1981); J. R. Klauder,Acta Phys. Austr. Suppl. XXV:251 (Springer-Verlag, Berlin, 1983); M. Namiki, inProceedings 2nd International Symposium Foundations of Quantum Mechanics (Tokyo, 1986), M. Namikiet al., eds. (Physical Society of Japan, Tokyo, 1987), p. 333.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ojima, I. Entropy production and nonequilibrium stationarity in quantum dynamical systems. Physical meaning of van Hove limit. J Stat Phys 56, 203–226 (1989). https://doi.org/10.1007/BF01044241

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01044241

Key words

Navigation