Skip to main content
Log in

Finite-size effects at critical points with anisotropic correlations: Phenomenological scaling theory and Monte Carlo simulations

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Various thermal equilibrium and nonequilibrium phase transitions exist where the correlation lengths in different lattice directions diverge with different exponentsv ,v : uniaxial Lifshitz points, the Kawasaki spin exchange model driven by an electric field, etc. An extension of finite-size scaling concepts to such anisotropic situations is proposed, including a discussion of (generalized) rectangular geometries, with linear dimensionL in the special direction and linear dimensionsL in all other directions. The related shape effects forL L but isotropic critical points are also discussed. Particular attention is paid to the case where the generalized hyperscaling relationv +(d−1)v =γ+2β does not hold. As a test of these ideas, a Monte Carlo simulation study for shape effects at isotropic critical point in the two-dimensional Ising model is presented, considering subsystems of a 1024x1024 square lattice at criticality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. E. Ferdinand and M. E. Fisher,Phys. Rev. 185:832 (1969).

    Google Scholar 

  2. M. E. Fisher, inCritical Phenomena, M. S. Green, ed. (Academic Press, New York, 1971), p. 1.

    Google Scholar 

  3. Y. Imry and D. J. Bergman,Phys. Rev. A 3:1416 (1971).

    Google Scholar 

  4. M. E. Fisher and M. N. Barber,Phys. Rev. Lett. 28:1516 (1972).

    Google Scholar 

  5. K. Binder,Z. Phys. B 43:119 (1981).

    Google Scholar 

  6. E. Brézin,J. Phys. (Paris)43:15 (1982).

    Google Scholar 

  7. M. N. Barber, inPhase Transitions and Critical Phenomena, Vol. VIII, C. Domb and J. L. Lebowitz, eds. (Academic Press, New York, 1983), p. 145.

    Google Scholar 

  8. P. Kleban and G. Akinci,Phys. Rev. B 28:1466 (1983);Phys. Rev. Lett. 51:1058 (1983).

    Google Scholar 

  9. V. Privman and M. E. Fisher,J. Stat. Phys. 33:385 (1983).

    Google Scholar 

  10. K. Binder, M. Nauenberg, V. Privman, and A. P. Young,Phys. Rev. B 31:1498 (1985).

    Google Scholar 

  11. K. Binder,Z. Phys. B 61:13 (1985).

    Google Scholar 

  12. J. Zinn-Justin and E. Brézin,Nucl. Phys. B 257 [FS14]:867 (1985).

    Google Scholar 

  13. J. M. Luck,Phys. Rev. B 31:3069 (1985).

    Google Scholar 

  14. T. W. Burkhardt and B. Derrida,Phys. Rev. B 32:7273 (1985).

    Google Scholar 

  15. P. Kleban, G. Akinci, R. Hentschke, and R. Brownstein,J. Phys. A 19:437 (1986).

    Google Scholar 

  16. K. Binder,Ferroelectrics 73:43 (1987).

    Google Scholar 

  17. J. L. Cardy, inPhase Transitions and Critical Phenomena, Vol. XI, C. Domb and J. L. Lebowitz, eds. (Academic Press, New York, 1987), p. 55.

    Google Scholar 

  18. K. Binder,Rep. Prog. Phys. 50:783 (1987).

    Google Scholar 

  19. H. Bernreuther and M. Geckeler,Nucl. Phys. B [FS] (1988), in press.

  20. M. E. Fisher,Rev. Mod. Phys. 46:597 (1974).

    Google Scholar 

  21. R. M. Hornreich, M. Luban, and S. Shtrikman,Phys. Rev. Lett. 35:1678 (1975).

    Google Scholar 

  22. R. M. Hornreich and A. D. Bruce,J. Phys. A 11:595 (1978).

    Google Scholar 

  23. G. S. Grest and J. Sak,Phys. Rev. B 17:3607 (1978).

    Google Scholar 

  24. K. Kawasaki, inPhase Transitions and Critical Phenomena, Vol. II, C. Domb and M. S. Green, eds. (Academic Press, New York, 1972), p. 443.

    Google Scholar 

  25. S. Katz, J. L. Lebowitz, and H. Spohn,Phys. Rev. B 28:1655 (1983).

    Google Scholar 

  26. S. Katz, J. L. Lebowitz, and H. Spohn,J. Stat. Phys. 34:497 (1984).

    Google Scholar 

  27. J. Marro, J. L. Lebowitz, H. Spohn, and M. H. Kalos,J. Stat. Phys. 38:725 (1985).

    Google Scholar 

  28. J. L. Vallés and J. Marro,J. Stat. Phys. 43:441 (1986).

    Google Scholar 

  29. J. L. Vallés and J. Marro,J. Stat. Phys. 49:89 (1987).

    Google Scholar 

  30. J. Marro and J. L. Vallés,J. Stat. Phys. 49:121 (1987).

    Google Scholar 

  31. J. Marro, J. L. Vallés, and J. M. González-Miranda,Phys. Rev. B 35:3372 (1987).

    Google Scholar 

  32. M. Q. Zhang, J.-S. Wang, J. L. Lebowitz, and J. L. Vallés,J. Stat. Phys. (1988).

  33. M. Q. Zhang, Ph.D. Thesis, Rutgers University, New Brunswick, New Jersey (1987), unpublished.

    Google Scholar 

  34. H. K. Janssen and B. Schmittmann,Z. Phys. B 64:503 (1986).

    Google Scholar 

  35. K.-T. Leung and J. Cardy,J. Stat. Phys. 44:567 (1986).

    Google Scholar 

  36. W. Kinzel, inPercolation Structures and Processes, G. Deutscher, R. Zallen, and J. Adler, eds. (Hilger, Bristol, 1983), p. 425.

    Google Scholar 

  37. W. Kinzel and J. M. Yeomans,J. Phys. A 14:L163 (1981).

    Google Scholar 

  38. A. M. Szpilka and V. Privman,Phys. Rev. B 28:6613 (1983).

    Google Scholar 

  39. V. Privman,J. Phys. A 18:L63 (1985); G. Forgacs and V. Privman,J. Stat. Phys. 49:1165 (1987).

    Google Scholar 

  40. E. Barouch, B. M. McCoy, and T. T. Wu,Phys. Rev. Lett. 31:1409 (1973), and references therein.

    Google Scholar 

  41. D. J. Amit,Field Theory, the Renormalization Group and Critical Phenomena (McGraw-Hill, New York, 1987).

    Google Scholar 

  42. J. Rudnick, G. Gaspari, and V. Privman,Phys. Rev. B 32:7594 (1985).

    Google Scholar 

  43. M. Luban, inPhase Transitions and Critical Phenomena, Vol. V, C. Domb and M. S. Green, eds. (Academic Press, New York, 1976), p. 35.

    Google Scholar 

  44. H.-K. Janssen and B. Schmittmann, private communication.

  45. K. Binder, ed.,Monte Carlo Method in Statistical Physics (Springer, Berlin, 1979).

    Google Scholar 

  46. M. Suzuki,Prog. Theor. Phys. 58:1142 (1977).

    Google Scholar 

  47. P. C. Hohenberg and B. I. Halperin,Rev. Mod. Phys. 49:435 (1977).

    Google Scholar 

  48. S. Wansleben and D. P. Landau,J. Appl. Phys. 61:3968 (1987), and references therein.

    Google Scholar 

  49. R. H. Swendsen and J.-S. Wang,Phys. Rev. Lett. 58:86 (1987).

    Google Scholar 

  50. L. Onsager,Phys. Rev. 65:117 (1944).

    Google Scholar 

  51. S. Wansleben,Computer Phys. Comm. 43:375 (1987).

    Google Scholar 

  52. T. T. Wu,Phys. Rev. 149:380 (1966).

    Google Scholar 

  53. W. Selke,Z. Phys. B 43:335 (1981).

    Google Scholar 

  54. S. Dietrich, inPhase Transitions and Critical Phenomena, Vol. XII, C. Domb and J. L. Lebowitz, eds. (Academic Press, New York, 1988), p. 1.

    Google Scholar 

  55. R. Lipowsky and G. Gopper,Phys. Rev. B 29:5213 (1984).

    Google Scholar 

  56. V. Privman and N. M. Svrabic,Phys. Rev. 37:3713 (1988).

    Google Scholar 

  57. M. Gelfand and R. Lipowsky,Phys. Rev. 36:8725 (1987); H. Nabanishi and M. E. Fisher,J. Chem. Phys. 78:3279 (1983).

    Google Scholar 

  58. D. M. Knoll and G. Gompper, KFA Jülich, preprint.

  59. W. Selke, D. A. Huse, and D. M. Kroll,J. Phys. A 17:3019 (1984).

    Google Scholar 

  60. K. Binder and D. P. Landau,J. Appl. Phys. 57:3306 (1985);Phys. Rev. B 37:1745 (1988).

    Google Scholar 

  61. S. M. Bhattacharjee and J. F. Nagle,Phys. Rev. A 31:3199 (1985).

    Google Scholar 

  62. P. W. Kasteleyn,J. Math. Phys. 4:287 (1963).

    Google Scholar 

  63. H. J. Schultz,Phys. Rev. B 22:5274 (1980).

    Google Scholar 

  64. D. A. Huse and M. E. Fisher,Phys. Rev. B 29:239 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Visiting Supercomputer Senior Scientist at Rutgers University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Binder, K., Wang, J.S. Finite-size effects at critical points with anisotropic correlations: Phenomenological scaling theory and Monte Carlo simulations. J Stat Phys 55, 87–126 (1989). https://doi.org/10.1007/BF01042592

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01042592

Key words

Navigation