Skip to main content
Log in

Behavior of a quantum particle in contact with a classical heat bath

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We investigate the behavior of a two-level quantum system in contact with a classical heat bath, e.g., a solute particle with internal degrees of freedom immersed in a solvent of massive particles. Using a combination of analytical and numerical methods, we obtain precise information about localization, time-displaced correlation functions, and the frequency-dependent susceptibility of such solute particles. We find that these quantities can have a strong dependence on the density of the solvent fluid, with the maximum changes from the behavior of the corresponding isolated quantum system occurring in many cases at very low densities. We compare the exact results with those obtained by path integral Monte Carlo. There is good agreement with the imaginary time correlations, but analytic continuation to real time proves elusive: even with the best numerical data on the former, we can only get very gross features of the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Chandler and P. G. Wolynes,J. Chem. Phys. 74:4078 (1981); J. S. Hoye and G. Stell,J. Chem. Phys. 75:5133 (1981); D. Chandler,Introduction to Modern Statistical Mechanics (Oxford University Press, New York, 1987).

    Google Scholar 

  2. M. Sprik, R. W. Impey, and M. L. Klein,Phys. Rev. Lett. 56:2326 (1986); D. F. Coker, B. J. Berne, and D. Thirumalai,J. Chem. Phys. 86:5689 (1987); Y. Chung, P. Lemaire, and S. Suckewer,Phys. Rev. Lett. 60:1122 (1988).

    Google Scholar 

  3. I. Messing, B. Raz, and J. Jortner,J. Chem. Phys. 66:2239, 4577 (1977); R. Nowak and E. R. Bernstein,J. Chem. Phys. 87:2457 (1987); N. Schwentner, E.-E. Koch, and J. Jortner,Electronic Excitations in Condensed Rare Gases (Springer-Verlag, Berlin, 1985).

    Google Scholar 

  4. P. Claverie and G. Jona-Lassinio,Phys. Rev. A 33:2245 (1986); B. Bleaney, J. H. N. Loubser,Nature 161:522 (1948).

    Google Scholar 

  5. A. J. Leggett, S. Chakravarty, A. T. Dorsay, M. P. A. Fisher, A. Garg, and W. Zwerger,Rev. Mod. Phys. 59:1 (1987).

    Google Scholar 

  6. H. Spohn and R. Dümke,J. Stat. Phys. 41:389 (1985).

    Google Scholar 

  7. D. Thirumalai and B. Berne,J. Chem. Phys. 79:5029 (1983); J. D. Doll, R. D. Coalson, and D. L. Freeman,J. Chem. Phys. 87:1641 (1987); J. Chang and W. H. Miller,J. Chem. Phys. 87:1648 (1987); J. D. Doll, T. L. Beck, and D. L. Freeman, preprint.

    Google Scholar 

  8. R. Kubo,J. Phys. Soc. Japan 12:149 (1957); R. Kubo, M. Toda, and N. Hashitsume,Statistical Physics II (Springer-Verlag, Berlin, 1985).

    Google Scholar 

  9. P. Ballone, P. de Smedt, J. L. Lebowitz, J. Talbot, and E. Waisman,Phys. Rev. A 35:2 (1987); P. de Smedt, P. Nielaba, J. L. Lebowitz, J. Talbot, and L. Dooms,Phys. Rev. A 38:1381 (1988).

    Google Scholar 

  10. M. Suzuki,Prog. Theor. Phys. 46:1337 (1971),56:1454 (1976);Commun. Math. Phys. 51:183 (1976).

    Google Scholar 

  11. R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).

    Google Scholar 

  12. T. Burke and J. L. Lebowitz,J. Math. Phys. 9:1586 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielaba, P., Lebowitz, J.L., Spohn, H. et al. Behavior of a quantum particle in contact with a classical heat bath. J Stat Phys 55, 745–767 (1989). https://doi.org/10.1007/BF01041606

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01041606

Key words

Navigation