Skip to main content
Log in

Transient bimodality in interacting particle systems

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider a system of spins which have values ±1 and evolve according to a jump Markov process whose generator is the sum of two generators, one describing a spin-flipGlauber process, the other aKawasaki (stirring) evolution. It was proven elsewhere that if the Kawasaki dynamics is speeded up by a factor ε−2, then, in the limit ε → 0 (continuum limit), propagation of chaos holds and the local magnetization solves a reaction-diffusion equation. We choose the parameters of the Glauber interaction so that the potential of the reaction term in the reaction-diffusion equation is a double-well potential with quartic maximum at the origin. We assume further that for each ε the system is in a finite interval ofZ with ε−1 sites and periodic boundary conditions. We specify the initial measure as the product measure with 0 spin average, thus obtaining, in the continuum limit, a constant magnetic profile equal to 0, which is a stationary unstable solution to the reaction-diffusion equation. We prove that at times of the order ε−1/2 propagation of chaos does not hold any more and, in the limit as ε → 0, the state becomes a nontrivial superposition of Bernoulli measures with parameters corresponding to the minima of the reaction potential. The coefficients of such a superposition depend on time (on the scale ε−1/2) and at large times (on this scale) the coefficient of the term corresponding to the initial magnetization vanishes (transient bimodality). This differs from what was observed by De Masi, Presutti, and Vares, who considered a reaction potential with quadratic maximum and no bimodal effect was seen, as predicted by Broggi, Lugiato, and Colombo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Baras, G. Nicolis, M. Malek Mansour, and J. W. Turner,J. Stat. Phys. 32:1 (1983).

    Google Scholar 

  2. P. Billingsley,Convergence of Probability Measures (Wiley, New York, 1968).

    Google Scholar 

  3. G. Broggi, L. A. Lugiato, and A. Colombo,Phys. Rev. A 32:2803–2812 (1985).

    Google Scholar 

  4. M. Cassandro, A. Galves, E. Olivieri, and M. E. Vares,J. Stat. Phys. 35:603 (1984).

    Google Scholar 

  5. D. A. Dawson,J. Stat. Phys. 31:29 (1983).

    Google Scholar 

  6. G. F. Dell'Antonio, Small random perturbations and uniqueness of the limit measure for a vector field with a manifold of zeroes, CARR Preprint 6/88.

  7. A. De Masi, P. A. Ferrari, and J. L. Lebowitz,Phys. Rev. Lett. 55:19, 1947 (1985).

    Google Scholar 

  8. A. De Masi, P. A. Ferrari, and J. L. Lebowitz,J. Stat. Phys. 44:589 (1985).

    Google Scholar 

  9. A. DeMasi, C. Kipnis, E. Presutti, and E. Saada, Microscopic structure at the shock in the asymmetric simple exclusion,Stochastics (1987), submitted.

  10. A. DeMasi, E. Presutti, and E. Scacciatelli, The weakly asymmetric simple exclusion process,Ann. Inst. Henri Poincaré (1989).

  11. A. De Masi, E. Presutti, and M. E. Vares,J. Stat. Phys. 44:645 (1986).

    Google Scholar 

  12. P. A. Ferrari, E. Presutti, E. Scacciatelli, and M. E. Vares, The symmetric simple exclusion process. I. Probability estimates, Preprint UCSB (October 1987).

  13. R. L. Holley and D. W. Stroock,Kyoto Univ. Res. Inst. Math. Sci. Publ. A 14:86 (1978).

    Google Scholar 

  14. N. Ikeda and S. Watanabe,Stochastic Differential Equations and Diffusion Processes (North-Holland, 1981).

  15. G. Jona-Lasinio and P. K. Mitter,Commun. Math. Phys. 101:409–436 (1985).

    Google Scholar 

  16. J. L. Lebowitz, E. Orlandi, and E. Presutti, Convergence of stochastic cellular automaton to Burgers' equation: Fluctuations and Stability,Physica D (1988).

  17. J. L. Lebowitz, E. Presutti, and H. Spohn, Microscopic models of hydrodynamical behavior,J. Stat. Phys. 51:841 (1988).

    Google Scholar 

  18. T. M. Liggett,Interacting Particle Systems (Springer-Verlag, 1985).

  19. C. W. Meyer, G. Ahlers, and D. S. Cannell,Phys. Rev. Lett. (1987).

  20. D. W. Stroock and S. Varadhan,Multidimensional Diffusion Processes (Springer-Verlag, 1979).

  21. W. D. Wick,J. Stat. Phys. 38:1005–1025 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calderoni, P., Pellegrinotti, A., Presutti, E. et al. Transient bimodality in interacting particle systems. J Stat Phys 55, 523–577 (1989). https://doi.org/10.1007/BF01041597

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01041597

Key words

Navigation