Skip to main content
Log in

Size distribution of fractured areas in one-dimensional systems

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study a one-dimensional model for fracture, identifying fractured areas with intervals on which a stress fieldξ exceeds a threshold valueΔ. Whenξ is a diffusion process, the cumulative numberN(l) of fractured areas whose length is greater thanl obeys a power lawCl pasl↓0 with probability one. The exponentp and the constantC are determined. The exponentp agrees with the Hausdorff dimension of the end points of fractured areas, i.e.,ξ −1(Δ). Even ifξ is self-similar with parameterH>0, i.e.,ξ(cx)−Δ is equivalent toc H{ξ(x)−Δ} for anyc>0, the exponentp does not depend solely onH;p=λH, whereλɛ(0, 1/H) is another parameter characterizingξ. Non-diffusion processes are given whereN(l) does not follow a power law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. F. Richter,Elementary Seismology (Freeman, San Francisco, 1958); T. Utsu,Seismology, 2nd ed. (Kyoritsu, Tokyo, 1984) [in Japanese].

    Google Scholar 

  2. B. B. Mandelbrot,The Fractal Geometry of Nature (Freeman, San Francisco, 1982); H. Takayasu,Fractal (Asakura, Tokyo, 1986) [in Japanese].

    Google Scholar 

  3. D. J. Andrews,J. Geophys. Res. 85:3867 (1980); K.Yamashina,EOS 63:1157 (1982); M. Matsushita,J. Phys. Soc. Japan 54:857 (1985).

    Google Scholar 

  4. B. B. Mandelbrot, D. E. Passoja, and A. J. Paullay,Nature 308:721 (1984).

    Google Scholar 

  5. C. J. Allègre, J. L. LeMoulel, and A. Provost,Nature 297:47 (1982); T. R. Madden,J. Geophys. Res. 88:585 (1983); R. F. Smalley and D. L. Turcotte,J. Geophys. Res. 90:1894 (1985).

    Google Scholar 

  6. H. Oda, H. Koami, and K. Seya,Zisin 38:331 (1985) [in Japanese].

    Google Scholar 

  7. B. Paul, inFracture II, H. Liebowitz, ed. (Academic Press, New York, 1968).

    Google Scholar 

  8. K. Itô and H. P. McKean, Jr.,Diffusion Processes and Their Sample Paths, 2nd ed. (Springer, Berlin, 1974).

    Google Scholar 

  9. K. Aki, inEarthquake Prediction, D. W. Simpson and D. G. Richerds, eds. (AGU, Washington, D.C., 1981).

    Google Scholar 

  10. K. Itô,Stochastic Processes II (Yale University Press, 1963), Chapter 5.

  11. Y. Kasahara,Japan J. Math. 1:67 (1975); S. Kotani and S. Watanabe, inFunctional Analysis in Markov Processes, M. Fukushima, ed. (Springer, Berlin, 1982), p. 235.

    Google Scholar 

  12. E. Seneta,Regularly Varying Functions, A. Dold and B. Eckham, eds. (Springer, Berlin, 1976).

    Google Scholar 

  13. J. Lamperti,Z. Wahrsch. Verw. Geb. 22:205 (1972).

    Google Scholar 

  14. Y. B. Belyaev,Theor. Prob. Appl. 4:402 (1959).

    Google Scholar 

  15. H. Cramer and M. R. Leadbetter,Stationary and Related Stochastic Processes (Wiley, New York, 1967).

    Google Scholar 

  16. T. Tsuboi,Proc. Imp. Acad. 16:449 (1940).

    Google Scholar 

  17. H. Resten,J. Math. Mech. 12:391 (1963).

    Google Scholar 

  18. C. Stone,Ill. J. Math. 7:631 (1963).

    Google Scholar 

  19. K. Itô,Stochastic Processes (Springer, 1984), Section 4.5.

  20. R. M. Blumenthal and R. K. Getoor,Ill. J. Math. 6:308 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ito, H.M., Kotani, S. & Yokota, T. Size distribution of fractured areas in one-dimensional systems. J Stat Phys 51, 569–584 (1988). https://doi.org/10.1007/BF01028473

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01028473

Key words

Navigation