Skip to main content
Log in

Dissipation and large thermodynamic fluctuations

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The results of recent work of Kipnis, Olla, and Varadhan on the dynamic large deviations from a hydrodynamic limit for some interacting particle models are formally extended to a general hydrodynamic situation, including non-equilibrium steady states, as a fluctuation-dissipation hypothesis. The basic conjecture is that the exponent of decay in the probability of a large thermodynamic fluctuation is given by the dissipation of the force required to produce the fluctuation. It is shown that this hypothesis leads to a nonlinear version of Onsager-Machlup fluctuation theory that had previously been proposed by Graham. A direct consequence of the theory is a dynamic variational principle for the most probable thermodynamic history subject to imposed constraints (Onsager's principle of least dissipation). Following Graham, the theory leads also to a generalized potential, analogous to an equilibrium free energy, for the nonequilibrium steady state and an associated static variational principle. Finally, a formulation of nonlinear fluctuating hydrodynamics is proposed in which the noise enters multiplicatively so as to reproduce the conjectured large-deviations theory on a formal analogy with the results of Freidlin and Wentzell for finite-dimensional systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Boltzmann,Wien. Akad. Sitz. 76:373–435 (1877).

    Google Scholar 

  2. A. Einstein,Ann. Phys. (Leipzig)22:180 (1907).

    Google Scholar 

  3. A. Einstein,Ann. Phys. (Leipzig)33:1275 (1910).

    Google Scholar 

  4. L. D. Landau and E. M. Lifshitz,Statistical Physics, 3rd ed. (Pergamon Press, Oxford, 1980).

    Google Scholar 

  5. Yu. L. Klimontovich,Statistical Physics (Harwood Academic Publishers, Chur, 1986).

    Google Scholar 

  6. S. R. de Groot and P. Mazur,Non-equilibrium Thermodynamics (North-Holland, Amsterdam, 1962).

    Google Scholar 

  7. L. Onsager and S. Machlup,Phys. Rev. 91:1505–1512, 1512–1515 (1953).

    Google Scholar 

  8. R. Schmitz,Phys. Rep. 171:1–58 (1988).

    Google Scholar 

  9. R. Graham, Onset of cooperative behavior in nonequilibrium steady states, inOrder and Fluctuations in Equilibrium and Nonequilibrium Statistical Mechanics, G. Nicolis, G. Dewel, and J. W. Turner, eds. (Wiley, New York, 1981).

    Google Scholar 

  10. N. G. van Kampen,Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981).

    Google Scholar 

  11. W. van Saarloos, D. Bedeaux, and P. Mazur,Physica 110A:147–170 (1982).

    Google Scholar 

  12. C. Kipnis, S. Olla, and S. R. S. Varadhan,Commun. Pure Appl. Math. XLII:115–137 (1989).

    Google Scholar 

  13. M. D. Donsker and S. R. S. Varadhan,Commun. Pure Appl. Math. XLII:243–270 (1989).

    Google Scholar 

  14. H. Spohn,Large Scale Dynamics of Interacting Particles (Springer-Verlag, 1990).

  15. M. I. Freidlin and A. D. Wentzell,Random Perturbations of Dynamical Systems (Springer-Verlag, New York, 1984).

    Google Scholar 

  16. A. D. Wentzell and M. I. Freidlin,Russ. Math. Surv. 25:1–55 (1970).

    Google Scholar 

  17. D. Ruelle,Statistical Mechanics: Rigorous Results (Benjamin, Reading, Massachusetts, 1969).

    Google Scholar 

  18. O. E. Lanford, Entropy and equilibrium states in classical statistical mechanics, inStatistical Mechanics and Mathematical Problems, J. Moser, eds. (Springer-Verlag, Berlin, 1973), pp. 1–111.

    Google Scholar 

  19. A. Martin-Löf,Statistical Mechanics and the Foundations of Thermodynamics (Springer-Verlag, Berlin, 1979).

    Google Scholar 

  20. S. R. S. Varadhan,Commun. Pure Appl. Math. 19:261–286 (1966).

    Google Scholar 

  21. R. S. Ellis,Entropy, Large Deviations and Statistical Mechanics (Springer-Verlag, New York, 1985).

    Google Scholar 

  22. U. Frisch, D. d'Humieres, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.-P. Rivet,Complex Systems 1:649–707 (1987).

    Google Scholar 

  23. J. L. Lebowitz, E. Presutti, and H. Spohn,J. Stat. Phys. 51:841–862 (1988).

    Google Scholar 

  24. A. DeMasi, N. Ianiro, A. Pellegrinotti, and E. Presutti, A survey of the hydrodynamical behavior of many-particle systems, inNonequilibrium Phenomena II: From Stochastics to Hydrodynamics, J. L. Lebowitz and E. W. Montroll, eds. (North-Holland, Amsterdam, 1984).

    Google Scholar 

  25. L. D. Landau and E. M. Lifschitz,Fluid Mechanics (Pergamon, New York, 1959).

    Google Scholar 

  26. L. D. Landau and E. M. Lifschitz,Zh. Eksp. Teor. Fit. 32:618 (1957) [Sov. Phys.-JETP 5:512 (1957)].

    Google Scholar 

  27. H. Spohn,J. Phys. A: Math. Gen. 16:4275–4291 (1983).

    Google Scholar 

  28. A. DeMasi, R. Esposito, J. L. Lebowitz, and E. Presutti,Commun. Math. Phys. 125:127–145 (1989).

    Google Scholar 

  29. C. Marchioro and E. Presutti,Commun. Math. Phys. 27:146–154 (1972).

    Google Scholar 

  30. S. R. S. Varadhan,Large Deviations and Applications (SIAM, Philadelphia, 1984).

    Google Scholar 

  31. L. Onsager,Phys. Rev. 37:405 (1931).

    Google Scholar 

  32. L. Onsager,Phys. Rev. 38:2265 (1931).

    Google Scholar 

  33. W. van Saarloos, D. Bedeaux, and P. Mazur,Physica 107A:109 (1981).

    Google Scholar 

  34. R. Graham,Phys. Rev. A 10:1762 (1974).

    Google Scholar 

  35. R. Graham and T. Tel,Phys. Rev. A 31:1109 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eyink, G.L. Dissipation and large thermodynamic fluctuations. J Stat Phys 61, 533–572 (1990). https://doi.org/10.1007/BF01027291

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01027291

Key words

Navigation