Skip to main content
Log in

Calculation of the permeability of porous media using hydrodynamic cellular automata

  • Short Communications
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The permeability of two-dimensional porous media is calculated numerically as a function of porosity using the hydrodynamic cellular automata (lattice gas) approach. Results are presented for systems with up to 22 million sites (8192×2688). For randomly distributed solid obstacles whose macroscopic dimensions are much longer than the mean free path of particles in the fluid, the permeabilityκ varies with porosityε asκ ∞(ε−0.6)/(1−ε) forε>0.7. When the solid obstacles are much smaller than the mean free path of particles in the fluid, i.e., when they form a dust of point objects, then such a relationship no longer holds and the permeability is more than an order of magnitude smaller than for the former case. The program used for the simulations is discussed and a listing is presented in the Appendix which achieved a sustained speed of 185 million sites updated per second on a single processor of the Cray-YMP. (On a Sun Sparc Workstation, the same program ran about 100 times slower.)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. U. Frisch, B. Hasslacher, and Y. Pomeau,Phys. Rev. Lett. 56:1505 (1986).

    Google Scholar 

  2. M. Hénon,Complex Systems 1:763 (1987); J.-P. Renet, M. Hénon, U. Frisch, and D. d'Humiéres,Europhys. Lett. 7:231 (1988); H. A. Lim,Phys. Rev. A 40:968 (1989); P. Kadanoff, G. R. McNamara, and G. Zanetti,Phys. Rev. A 40:4527 (1989).

    Google Scholar 

  3. G. D. Doolen, First Topical Conference “Computational Physics” of the American Physical Society, Boston, June 1989.

  4. U. Brosa,J. Phys. France 51:1051 (1990); U. Brosa, C. Küttner, and U. Werner,J. Stat. Phys. 60:875 (1990).

    Google Scholar 

  5. D. H. Rothman,Geophysics 53:509 (1988); S. Chen, K. Diemer, G. D. Doolen, K. Eggert, C. Fu, S. Gutman, and B. Travis, in Proceedings of the NATO Advanced Workshop on Lattice Gas Methods for PDE's,Physica D, to be published; S. Suci, A. Cancelliere, C. Chang, E. Foti, M. Gramignani, and D. Rothman, inComputational Methods in Subsurface Hydrology, G. Gambolati, A. Rinaldo, C. A. Brebbia, W. G. Gray, and G. F. Pinder, eds. (Springer-Verlag, Berlin, 1990).

    Google Scholar 

  6. U. Bosa and D. Stauffer,J. Stat. Phys. 63:405 (1991).

    Google Scholar 

  7. U. Brosa and D. Stauffer,J. Stat. Phys. 57:399 (1989).

    Google Scholar 

  8. J. A. M. S. Duarte and U. Brosa,J. Stat. Phys. 59:501 (1990).

    Google Scholar 

  9. J. P. Boon, inCorrelations and Connectivity Geometry Aspects of Physics, Chemistry and Biology, H. E. Stanley and N. Ostrowsky, eds. (Academic Press, Dordrecht, 1990).

    Google Scholar 

  10. F. Hayot, M. Mandal, and P. Sadayappan,J. Comp. Phys. 80:277 (1989).

    Google Scholar 

  11. G. Riccardi, C. Bauer, and H. Lim, in Proceedings of the NATO Advanced Workshop on Lattice Gas Methods for PDE's,Physica D, to be published.

  12. A. Gunstensen, MIT unpublished report.

  13. D. d'Humiéres, Private communication.

  14. J. Feder and T. Jossang, Private communication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohring, G.A. Calculation of the permeability of porous media using hydrodynamic cellular automata. J Stat Phys 63, 411–418 (1991). https://doi.org/10.1007/BF01026614

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01026614

Key words

Navigation