Skip to main content
Log in

From dilute to dense self-avoiding walks on hypercubic lattices

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A field-theoretic representation is presented to count the number of configurations of a single self-avoiding walk on a hypercubic lattice ind dimensions with periodic boundary conditions. We evaluate the connectivity constant as a function of the fractionf of sites occupied by the polymer chain. The meanfield approximation is exact in the limit of infinite dimensions, and corrections to it in powers ofd −1 can be systematically evaluated. The connectivity constant and the site entropy calculated throughout second order compare well with known results in two and three dimensions. We also find that the entropy per site develops a maximum atf≳1−(2d)−1. Ford=2 (d=3), this maximum occurs atf~0.80 (f~0.86) and its value is about 50% (30%) higher than the entropy per site of a Hamiltonian walk (f=1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. Flory,Principles of Polymer Chemistry (Cornell University, Ithaca, 1953);Statistical Mechanics of Chain Molecules (Interscience, New York, 1969); H. Yamakawa,Modern Theory of Polymer Solutions (Harper and Row, New York, 1971).

    Google Scholar 

  2. P. G. de Gennes,Scaling Concepts in Polymer Physics (Cornell University Press, New York, 1979); M. Doi and S. F. Edwards,Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986); K. F. Freed,Renormalization Group Theory of Macromolecules (Wiley-Interscience, New York, 1987).

    Google Scholar 

  3. M. G. Watts,J. Phys. A. 8:61 (1975), and references therein. The Connectivity Constant for Hypercubic Lattices in four, five and six Dimensions was Calculated by M. E. Fisher and D. S. Gaunt,Phys. Rev. 133:224 (1964).

    Google Scholar 

  4. For a recent review on Monte Carlo simulation of lattice models of polymers, see A. Baumgartner, inApplications of the Monte Carlo Method in Statistical Physics, K. Binder, ed. (Springer, Berlin, New York, 1984), p. 145.

    Google Scholar 

  5. K. Kremer and K. Binder, to be published.

  6. For a nice description of properties of Hamiltonian walks and a complete list of references, see B. Duplantier and F. David,J. Stat. Phys., in press.

  7. B. Duplantier,J. Stat. Phys. 49:411 (1987).

    Google Scholar 

  8. P. D. Gujrati and M. Goldstein,J. Chem. Phys. 74:2596 (1981).

    Google Scholar 

  9. P. W. Kasteleyn,Physica 29:1329 (1962).

    Google Scholar 

  10. E. H. Lieb,Phys. Rev. Lett. 18:692 (1967).

    Google Scholar 

  11. T. G. Schmaltz, G. E. Hite, and D. J. Klein,J. Phys. A 17:445 (1984).

    Google Scholar 

  12. H. Orland, C. Itzykson, and C. de Dominicis,J. Phys. Lett. (Paris)46:353 (1985).

    Google Scholar 

  13. B. Duplantier and H. Saleur,Nucl. Phys. B. 290[FS20]:291 (1987).

    Google Scholar 

  14. K. F. Freed,J. Phys. A 18:871 (1985).

    Google Scholar 

  15. M. G. Bawendi, K. F. Freed, and U. Mohanty,J. Chem. Phys. 84:7036 (1986).

    Google Scholar 

  16. M. G. Bawendi and K. F. Freed,J. Chem. Phys. 86:3720 (1987).

    Google Scholar 

  17. M. G. Bawendi and K. F. Freed,J. Chem. Phys. 85:3007 (1986).

    Google Scholar 

  18. M. G. Bawendi, K. F. Freed, and U. Mohanty,J. Chem. Phys. 87:5534 (1987); M. G. Bawendi and K. F. Freed,J. Chem. Phys., in press; K. F. Freed and A. I. Pesci,J. Chem. Phys. Lett. 87:7342 (1987); A. I. Pesci and K. F. Freed,J. Chem. Phys., in press.

    Google Scholar 

  19. A. M. Nemirovsky, M. G. Bawendi, and K. F. Freed,J. Chem. Phys. 87:7272 (1987).

    Google Scholar 

  20. C. Itzykson and J. B. Zuber,Quantum Field Theory (McGraw-Hill, New York, 1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nemirovsky, A.M., Coutinho-Filho, M.D. From dilute to dense self-avoiding walks on hypercubic lattices. J Stat Phys 53, 1139–1153 (1988). https://doi.org/10.1007/BF01023861

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01023861

Key words

Navigation