Skip to main content
Log in

Temperature transform of the Boltzmann equation

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We define an integral transform of the energy distribution function for an isotropic and homogeneous diluted gas. It may be interpreted as a linear combination of equilibrium states with variable temperatures. We show that the temporal evolution features of the distribution function are determined by the singularities of this temperature transform. We compare the relaxation to the equilibrium process for Maxwell and very hard-particle interaction models, finding many basic discrepancies. Finally, we formulate an alternative approach, which is given by anN-pole approximation with a clear physical meaning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Lebowitz and E. W. Montroll, eds.,Non-equilibrium Phenomena I, The Boltzmann Equation (North-Holland, Amsterdam, 1983).

    Google Scholar 

  2. M. H. Ernst,Phys. Rep. 78:1 (1981).

    Google Scholar 

  3. A. V. Bobylev,Sov. Phys. Dokl. 20:820, 822 (1976).

    Google Scholar 

  4. E. H. Hauge and E. Praestgaard,J. Stat. Phys. 24:21 (1981).

    Google Scholar 

  5. M. Alexanian,Phys. Lett. 74A:1 (1979).

    Google Scholar 

  6. M. Krook and T. T. Wu,Phys. Fluids 20:1589 (1977).

    Google Scholar 

  7. M. H. Ernst,Phys. Lett. 69A:390 (1979).

    Google Scholar 

  8. H. Cornille and A. Gervois,Phys. Lett. 79A:291 (1980).

    Google Scholar 

  9. E. M. Hendriks and M. H. Ernst,Physica 120A:545 (1983).

    Google Scholar 

  10. C. Cercignani,Theory and Application of the Boltzmann Equation (Scottish Academic Press, Edinburgh, 1975).

    Google Scholar 

  11. S. Simons,Phys. Lett. 69A:239 (1978).

    Google Scholar 

  12. R. O. Barrachina, D. H. Fujii and C. R. Garibotti,Phys. Lett. 109A:447 (1985).

    Google Scholar 

  13. R. Courant and D. Hilbert,Methods of Mathematical Physics, Vol.1 (Interscience, New York, 1953).

    Google Scholar 

  14. P. Henrici,Applied and Computational Complex Analysis, Vol. 2 (Wiley, New York, 1977).

    Google Scholar 

  15. M. Barnsley and H. Cornille,J. Math. Phys. 25:1176 (1980).

    Google Scholar 

  16. E. M. Hendriks and T. M. Nieuwenhuizen,J. Stat. Phys. 29:591 (1982).

    Google Scholar 

  17. A. V. Bobylev,Sov. Phys. Dokl. 25:257 (1980).

    Google Scholar 

  18. D. H. Fujii, R. O. Barrachina and C. R. Garibotti,J. Stat. Phys. 44:95 (1986).

    Google Scholar 

  19. G. A. Baker, Jr.,Essential of Padé Approximants (Academic Press, New York, 1975).

    Google Scholar 

  20. R. G. Gordon,J. Math. Phys. 9:655 (1968).

    Google Scholar 

  21. H. Rutishauser,Der Quotienten-Differenzen Algorithmus (Birkhauser, Basel/Stuttgart, 1957).

    Google Scholar 

  22. M. Barnsley and G. Turchetti,Lett. Nuovo Cimento 26:188 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fellow of the Conselho Nacional de Desenvolvimento Cientifico e Tecnólogico, Brazil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrachina, R.O., Fujii, D.H. & Garibotti, C.R. Temperature transform of the Boltzmann equation. J Stat Phys 45, 647–668 (1986). https://doi.org/10.1007/BF01021089

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01021089

Key words

Navigation