Skip to main content
Log in

Inhomogeneous similarity solutions of the Boltzmann equation with confining external forces

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The Nikolskii transform makes it possible to construct inhomogeneous solutions of the Boltzmann equation from homogeneous ones. These solutions correspond to a gas in expansion, but if we introduce external forces, they can relax toward absolute Maxwellians. This property holds independently of the assumed intermolecular inverse power force. Consequently, for Maxwell molecules and from energy-dependent homogeneous distributions, we construct effectively a class of inhomogeneous similarity distributions with Maxwellian equilibrium relaxation. We review and investigate again the homogeneous distributions which can be written in closed form, for instance, we show that an elliptic exact solution proposed some years ago violates positivity. For Maxwell interaction with singular cross sections, we numerically construct inhomogeneous distributions having Maxwellian equilibrium states and study the Tjon overshoot effect. We show that both the sign and the time decrease of the external force as well as the microscopic model of the cross section contribute to the asymptotic behavior of the distribution. These inhomogeneous similarity solutions include a class of distributions that asymptotically oscillate between different Maxwellians. Two classes of external forces are considered: linear spatial-dependent forces or linear velocity-dependent forces plus source term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Nikolskii,Sov. Phys. Dokl. 8:633 (1964).

    Google Scholar 

  2. V. Bobylev,Sov. Phys. Dokl. 20:820, 822 (1976);25:257 (1980); R. G. Muncaster,Arch. Mech. Anal. 1979:79.

    Google Scholar 

  3. H. Cornille,J. Math. Phys. 26:1203 (1985);J. Phys. A 18:1209 (1985).

    Google Scholar 

  4. H. Cornille,J. Phys. A 18:L839 (1985); 2ND International Workshop MAFPD, to appear in TTSP (1986);J. Math. Phys. (1986).

    Google Scholar 

  5. M. Krook and T. T. Wu,Phys. Rev. Lett. 16:1107 (1976).

    Google Scholar 

  6. J. A. Tjon and T. T. Wu,Phys. Rev. A 19:883 (1978); M. H. Ernst,Phys. Lett. 69A:390 (1979); M. Barnsley and H. Cornille,J. Math. Phys. 21:1176 (1980); H. Cornille and A. Gervois,J. Stat. Phys. 23:167 (1980); E. Futcher, M. R. Hoare, E. M. Hendriks, and M. H. Ernst,Physica 101A:185 (1980); R. M. Ziff,Phys. Rv. A 23:916 (1981); R. O. Barrachina, D. H. Fujii, and C. R. Garibotti,Phys. Rev. A, to appear.

    Google Scholar 

  7. H. Cornille and A. Gervois, inProblèmes inverses, P. Sabatier, ed. (Editions du CNRS, Paris, 1980); M.Ernst,Phys. Rep. 78:1 (1981); M. R. Hoare, inAdvances in Chemical Physics LVI, I. Prigogine and Rice, eds. (1984), p. 2.

    Google Scholar 

  8. J. A. Tjon and T. T. Wu,Phys. Rev. A 19:883 (1979).

    Google Scholar 

  9. H. Cornille and A. Gervois,J. Stat. Phys. 26:181 (1981).

    Google Scholar 

  10. M. H. Ernst and E. M. Hendriks,Phys. Lett. 81A:371 (1981).

    Google Scholar 

  11. J. A. Tjon,Phys. Lett. 70A:390 (1979); E. Hauge and E. Praetsgaard,J. Stat. Phys. 24:21 (1981).

    Google Scholar 

  12. L. Boltzmann,Wissenschaptlich Abhandlangen, F. Hasenorl, ed. (J. A. Barth, Leipzig, 1909), Vol. II, p. 83.

    Google Scholar 

  13. C. Cercignani,Theory and Application of the Boltzmann Equation (Scottish Academic Press, Edinburgh, 1975), pp. 142–149.

    Google Scholar 

  14. M. Barnsley and H. Cornille,J. Math. Phys. 21:1176 (1980); H. Cornille,J. Stat. Phys. 23:149 (1980);C. R. Acad. Sci. B 289:111 (1979); H. Cornille and A. Gervois,J. Stat. Phys. 21:167 (1980).

    Google Scholar 

  15. H. Cornille and A. Gervois,Phys. Lett. 83A:251 (1981);Physica 6D:1 (1982) H. Cornille,J. Math. Phys. 25:1335 (1984).

    Google Scholar 

  16. M. H. Ernst, inMathematical Problems in the Kinetic Theory of Gases, Oberwolf ach Conference, May 1979, D. C. Pack and M. Neunzert, eds. (Methode und Verfahren der Mathematisches Physik, Band 19, Larg, Frankfurt a/M, 1980), p. 83.

    Google Scholar 

  17. T. H. Southard, Weierstrass elliptic and related functions, inHandbook of Mathematical Functions, M. Abramowitz and I. A. Stegun, eds., Chapter 18, p. 627.

  18. H. Cornille and A. Gervois,J. Stat. Phys. 21:167 (1980).

    Google Scholar 

  19. M. Grad,Commun. Pure Appl. Math. 4:331 (1949) inHandbuck der Physik XII (Springer-Verlag, Berlin, 1958), p. 268 K.Kumar,Ann. Phys. 37:113 (1966) U. Weinert, S. L. Lin, and E. A. Mason,Phys. Rev. A 5:2262 (1980) E. M. Hendriks and T. M. Nieuwenhuizen,J. Slat. Phys. 29:591 (1982).

    Google Scholar 

  20. H. Cornille,J. Stat. Phys. 39:181 (1985)J. Phys. A 17:235, 2355 (1984).

    Google Scholar 

  21. Bateman,Higher Transcendental Functions (McGraw-Hill, New York, 1953), Vol. 1, p. 289.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cornille, H. Inhomogeneous similarity solutions of the Boltzmann equation with confining external forces. J Stat Phys 45, 611–646 (1986). https://doi.org/10.1007/BF01021088

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01021088

Key words

Navigation