Skip to main content
Log in

Self-avoiding random walks on the hexagonal lattice

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We use the algorithm recently introduce by A. Berretti and A. D. Sokal to compute numerically the critical exponents for the self-avoiding random walk on the hexagonal lattice. We findγ=1.3509±0.0057±0.0023v=0.7580±0.0049±0.0046α=0.519±0.082±0.077 where the first error is the systematic one due to corrections to scaling and the second is the statistical error. For the effective coordination numberμ we findμ=1.84779±0.00006±0.0017 The results support the Nienhuis conjectureγ=43/32 and provide a rough numerical check of the hyperscaling relationdv=2−α. An additional analysis, taking the Nienhuis value ofμ=(2+21/2)1/2 for granted, givesγ=1.3459±0.0040±0.0008

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Aizenman, Geometric analysis ofφ 4 fields and Ising models (I and II),Commun. Math. Phys. 86:1–48 (1982).

    Google Scholar 

  2. M. Aizenman, The intersection of Brownian paths as a case study of a renormalization group method for quantum field theory,Commun. Math. Phys. 97:91–110 (1985).

    Google Scholar 

  3. C. Aragão de Carvalho, S. Caracciolo, and J. Fröhlich, Polymers andg¦φ¦4 theory in four dimensions,Nucl. Phys. B 215[FS7]:209–248 (1983).

    Google Scholar 

  4. A. Berretti and A. D. Sokal, New Monte Carlo method for the self-avoiding walk,J. Stat. Phys. 40:483–531 (1985).

    Google Scholar 

  5. A. Bovier and G. Felder, Skeleton inequalities and the asymptotic nature of perturbation theory forφ 4 theories in two and three dimensions,Commun. Math. Phys. 93:259–275 (1984).

    Google Scholar 

  6. D. Brydges, J. Fröhlich, and T. Spencer, The random walk representation of classical spin systems and correlation inequalities,Commun. Math. Phys. 83:123–150 (1982).

    Google Scholar 

  7. D. Brydges, J. Fröhlich, and A. D. Sokal, The random walk representation of classical spin systems and correlation inequalities,Commun. Math. Phys. 91:117–139 (1983).

    Google Scholar 

  8. D. C. Brydges, J. Fröhlich, and A. D. Sokal, A new proof of the existence and nontriviality of the continuumϕ 42 andϕ 43 quantum field theories,Commun. Math. Phys. 91:141–186 (1983).

    Google Scholar 

  9. D. C. Brydges and T. Spencer, Self-avoiding walks in five or more dimensions,Commun. Math. Phys. 97:125–148 (1985).

    Google Scholar 

  10. B. Derrida, Phenomenological renormalization of the self-avoiding walk in two dimensions,J. Phys. A: Math. Gen. 14:L5-L9 (1981).

    Google Scholar 

  11. G. Felder and J. Fröhlich, Intersection properties of simple random walks. A renormalization group approach,Commun. Math. Phys. 97:111–124 (1985).

    Google Scholar 

  12. J. Fröhlich, In the triviality ofλϕ 4d theories and the approach to the critical point ind >4(−) dimensions,Nucl. Phys. B 200[FS4]:281–296 (1986).

    Google Scholar 

  13. P. G. de Gennes, Exponents for the excluded volume problem as derived by the Wilson method,Phys. Lett. 38A:339–340 (1972).

    Google Scholar 

  14. P. G. de Gennes,Scalling Concepts in Polymer Physics (Cornell University Press, Ithaca, New York, 1979).

    Google Scholar 

  15. A. J. Guttmann, On 2 dim. self-avoiding random walks,J. Phys. A: Math. Gen. 17:455–468 (1984).

    Google Scholar 

  16. G. F. Lawler, A self-avoiding random walk,Duke Math. J. 47:655–693 (1980).

    Google Scholar 

  17. G. F. Lawler, The probability of intersection of independent random walk in 4 dim.,Commun. Math. Phys. 86:539–554 (1982).

    Google Scholar 

  18. G. F. Lawler, Intersection of random walks in 4 dim. (II),Commun. Math. Phys. 97:583–594 (1985).

    Google Scholar 

  19. B. Nienhuis, Exact critical point and critical exponents ofO(N) models in 2 dim.,Phys. Rev. Lett. 49:1062–1064 (1982).

    Google Scholar 

  20. S. Redner and P. J. Reynolds, Position-space renormalization group for isolated polymer chains,J. Phys. A: Math. Gen. 14:2679–2703 (1981).

    Google Scholar 

  21. A. D. Sokal, Unpublished results.

  22. A. D. Sokal and L. Thomas, Unpublished results.

  23. K. Symanzik, Euclidean field theory, inProceedings International School of Physics “Enrico'' Varenna Course XLV, R. Jost, ed. (Academic Press, New York, 1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Forcrand, P., Koukiou, F. & Petritis, D. Self-avoiding random walks on the hexagonal lattice. J Stat Phys 45, 459–470 (1986). https://doi.org/10.1007/BF01021082

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01021082

Key words

Navigation