Skip to main content
Log in

A random field model for anomalous diffusion in heterogeneous porous media

  • Short Communications
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Heterogeneity, as it occurs in porous media, is characterized in terms of a scaling exponent, or fractal dimension. A feature of primary interest for two-phase flow is the mixing length. This paper determines the relation between the scaling exponent for the heterogeneity and the scaling exponent which governs the mixing length. The analysis assumes a linear transport equation and uses random fields first in the characterization of the heterogeneity and second in the solution of the flow problem, in order to determine the mixing exponents. The scaling behavior changes from long-length-scale dominated to short-length-scale dominated at a critical value of the scaling exponent of the rock heterogeneity. The long-length-scale-dominated diffusion is anomalous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Y. Amirat, K. Hamdache, and A. Ziani, Homogénisation d'équations hyperboliques du première ordre et application aux écoulements miscibles en milieu poreux,Ann. Inst. H. Poincaré 6:397–417 (1989).

    Google Scholar 

  2. J.-P. Bouchaud, A. Georges, J. Kopik, A. Provata, and S. Redner, Superdiffusion in random velocity fields, Levich Institute Preprint.

  3. J. Cannon, Continuous sample paths in quantum field theory,Commun. Math. Phys. 35:215–234 (1974).

    Google Scholar 

  4. P. Collela and O. Lanford, inConstructive Quantum Field Theory, G. Velo and A. Wightman, eds. (Springer-Verlag, New York, 1973), pp. 44–70.

    Google Scholar 

  5. F. J. Dyson, Existence of a phase transition in a one-dimensional Ising ferromagnet,Commun. Math. Phys. 12:212–215 (1969).

    Google Scholar 

  6. J. Glimm and A. Jaffe,Quantum Physics: A Functional Integral Point of View, 2nd ed. (Springer-Verlag, New York, 1987).

    Google Scholar 

  7. N. Goldenfield, O. Martin, Y. Oono, and F. Liu, Anomalous dimensions and the renormalization group in a nonlinear diffusion process,Phys. Rev. Lett. 64:1361–1364 (1990).

    Google Scholar 

  8. T. A. Hewett, Fractal distributions of reservoir heterogeneity and their influence on fluid transport, SPE 15386 (1986).

  9. T. A. Hewett and R. A. Behrens, Conditional simulation of reservoir heterogeneity with fractals, SPE 18326 (1988).

  10. L. Lake and H. Carroll, eds.,Reservoir Characterization (Academic Press, 1986).

  11. A. Lallemand-Barres and P. Peaudecerf, Recherche des relations entre le valeur de la dispersivité macroscopic, ses autres caractéristiques et les conditions de mesure,Bull BRGM 2e Ser. Sec. III 1978(4).

  12. J. F. Pickens and G. E. Grisak,Water Resources Res. 17:1191–1121 (1981).

    Google Scholar 

  13. S. W. Wheatcroft and S. W. Tyler,Water Resources Res. 24:566–578 (1988).

    Google Scholar 

  14. W. Zielke, Frequency-dependent friction in transient pipeline flow,J. Basic Eng., Trans. ASME (1968).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glimm, J., Sharp, D.H. A random field model for anomalous diffusion in heterogeneous porous media. J Stat Phys 62, 415–424 (1991). https://doi.org/10.1007/BF01020877

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01020877

Key words

Navigation