Skip to main content
Log in

One-dimensional harmonic lattice caricature of hydrodynamics

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We derive the hydrodynamic (Euler) approximation for the harmonic time evolution of infinite classical oscillator system on one-dimensional lattice ℤ1 It is known that equilibrium (i.e., time-invariant attractive) states for this model are translationally invariant Gaussian ones, with the mean 0, which satisfy some linear relations involving the interaction quadratic form. The natural “parameter” characterizing equilibrium states is the spectral density matrix function (SDMF)F(θ), θ∃[− π, π). Time evolution of a space “profile” of local equilibrium parameters is described by a space-time SDMFF(t;x, θ) t, x∃R 1. The hydrodynamic equation forF(t; x, θ) which we derive in this paper means that the “normal mode” profiles indexed byθ are moving according to linear laws and are mutually independent. The procedure of deriving the hydrodynamic equation is the following: We fix an initial SDMF profileF(x, θ) and a familyP ɛ,ɛ>0 of mean 0 states which satisfy the two conditions imposed on the covariance of spins at various lattice points: (a) the covariance at points “close” to the valueɛ −1 x in the stateP ɛ is approximately described by the SDMFF(x, θ); (b) The covariance (on large distances) decreases with distance quickly enough and uniformly inɛ. Given nonzerot∃R 1, we consider the states P ɛɛ−1τ ,ɛ>0, describing the system at the time momentsɛ −1 t during its harmonic time evolution. We check that the covariance at lattice points close toɛ −1 x in the state P ɛɛ−1τ is approximately described by a SDMFF(t;x, θ) and establish the connection betweenF(t; x, θ) andF(x,θ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Spohn,Rev. Mod. Phys. 53:569–615 (1980).

    Google Scholar 

  2. A. De Masi, N. Ianiro, A. Pellegrinotti, and E. Presutti, inNonequilibrium Phenomena, II: from Stochastics to Hydrodynamics, E. W. Montroll and J. L. Lebowitz, eds. (North-Holland, Amsterdam, 1984).

    Google Scholar 

  3. R. L. Dobrushin, Ya. G. Sinai, and Yu. M. Suhov, Dynamical systems of statistical mechanics, inModern Problems of Mathematics, Vol. 2 (VINITI Ed., Moscow, 1985).

    Google Scholar 

  4. O. E. Lanford, Dynamical Systems, Theory and Applications. Lecture Notes in Physics No. 38 (Springer-Verlag, Berlin, 1975).

    Google Scholar 

  5. W. Braun and K. Hepp,Commun. Math. Phys. 56:101–113 (1977).

    Google Scholar 

  6. V. P. Maslov,Modern Problems of Mathematics, No. 11 (VINITI Ed., Moscow, 1978).

    Google Scholar 

  7. H. Neunzert,Fluid Dynam. Transact. 9:229–254 (1978).

    Google Scholar 

  8. R. L. Dobrushin,Func. Anal. Pril. 13:48–58 (1979).

    Google Scholar 

  9. C. Boldrighini, R. L. Dobrushin, and Yu. M. Suhov,J. Stat. Phys. 31:577–615 (1983).

    Google Scholar 

  10. C. Boldrighini, A. Pellegrinotti, and L. Triolo,J. Stat. Phys. 30:123–155 (1983).

    Google Scholar 

  11. Yu. A. Rosanov,Gaussian Infinitely-Dimensional Distributions (Nauka, Moscow, 1968).

    Google Scholar 

  12. I. A. Ibragimov, Tr. MIAN,111:224–251 (1970).

    Google Scholar 

  13. A. G. Shuhov and Yu. M. Suhov, Ergodic properties of groups of Bogoliubov transformations of CARC*-algebras (Russian), to appear.

  14. O. E. Lanford and J. L. Lebowitz,Lecture Notes in Physics No. 38 (Springer-Verlag, Berlin, 1975).

    Google Scholar 

  15. D. Ruelle,Commun. Math. Phys. 9:267–278 (1968).

    Google Scholar 

  16. R. L. Dobrushin,Func. Anal. Pril. 2:44–57 (1968).

    Google Scholar 

  17. R. L. Dobrushin,Func. Anal. Pril. 3:27–35 (1969).

    Google Scholar 

  18. G. Gallavotti and S. Miracle-Sole,J. Math. Phys. 11:147–155 (1970).

    Google Scholar 

  19. Yu. M. Suhov,Tr. Mosc. Mat. Obshc. 24:175–200 (1971).

    Google Scholar 

  20. R. L. Dobrushin,Mat. Sb. 93:29–49 (1974).

    Google Scholar 

  21. M. Cassandro, E. Olivieri, A. Pellegrinotti, and E. Presutti,Z. Wahrschein. Verw. Geb. 41:313–334 (1978).

    Google Scholar 

  22. A. De Masi,Commun. Math. Phys. 67:43–50 (1979).

    Google Scholar 

  23. D. Ruelle,Commun. Mat. Phys. 18:127–159 (1970).

    Google Scholar 

  24. R. L. Dobrushin,Theor. Mat. Phys. 4:101–118 (1970).

    Google Scholar 

  25. J. L. Lebowitz and E. Presutti,Commun. Math. Phys. 50:195–218 (1976).

    Google Scholar 

  26. G. Benfatto, C. Marchioro, E. Presutti, and M. Pulvirenti,J. Stat. Phys. 22:349–361 (1980).

    Google Scholar 

  27. Yu. Dash'an and Yu. Suhov,Dokl. AN SSSR 242:513–516 (1978).

    Google Scholar 

  28. Yu. Suhov,Commun. Math. Phys. 50:113–132 (1976).

    Google Scholar 

  29. M. Campanino, D. Capocaccia, and E. Olivieri,J. Stat. Phys. 30:437–476 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobrushin, R.L., Pellegrinotti, A., Suhov, Y.M. et al. One-dimensional harmonic lattice caricature of hydrodynamics. J Stat Phys 43, 571–607 (1986). https://doi.org/10.1007/BF01020654

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01020654

Key words

Navigation