Skip to main content
Log in

Elementary derivation of nonlinear transport equations from statistical mechanics

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Exact closed nonlinear transport equations for a set of macroscopic variablesa are derived from classical statistical mechanics. The derivation involves only simple manipulations of the Liouville equation, and makes no use of projection operators or graphical expansions. It is based on the Chapman-Enskog idea of separating the distribution function into a constrained equilibrium part, obtained from information theory, and a small remainder. The resulting exact transport equations involve time convolutions over the past history of botha(t) anda(t). However, if the variablesa provide a complete macroscopic description, the equations may be simplified. This is accomplished by a systematic expansion procedure of Chapman-Enskog type, in which the small parameter is the natural parameter of slowness relevant to the problem. When carried out to second order, this expansion leads to approximate nonlinear transport equations that are local in time. These equations are valid far from equilibrium. They contain nonlinear (i.e., state-dependent) transport coefficients given by integrals of time correlation functions in the constrained equilibrium ensemble. Earlier results are recovered when the equations are linearized about equilibrium. As an illustrative application of the formalism, an expression is derived for the nonlinear (i.e., velocity-dependent) friction coefficient for a heavy particle in a bath of light particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Zwanzig,Ann. Rev. Phys. Chem. 16:67 (1965).

    Google Scholar 

  2. H. Moriet al, eds., Nonlinear Nonequilibrium Statistical Mechanics,Prog. Theo. Phys. Suppl. 64 (1978).

  3. L. Garrido, ed.,Systems Far from Equilibrium (Lecture Notes in Physics, Vol. 132, Springer-Verlag, Berlin, 1980).

    Google Scholar 

  4. H. J. M. Hanley, ed., Nonlinear Fluid Behavior,Physica 118A (1981).

  5. P. Resibois and M. De Leener,Classical Kinetic Theory of Fluids (Wiley-Interscience, New York, 1977).

    Google Scholar 

  6. S. A. Rice and P. Gray,The Statistical Mechanics of Simple Liquids (Wiley-Interscience, New York, 1965), Sec. 7.3.D, and references cited therein.

    Google Scholar 

  7. J. W. Dufty,Phys. Rev. 176:398 (1968).

    Google Scholar 

  8. B. Robertson, inThe Maximum Entropy Formalism, R. D. Levine and M. Tribus, eds. (MIT Press, Cambridge, Massachusetts, 1979), p. 289.

    Google Scholar 

  9. J. J. Brey, R. Zwanzig, and J. R. Dorfman,Physica 109A:425 (1981), and references cited therein.

    Google Scholar 

  10. H. Grabert,Projection Operator Techniques in Nonequilibrium Statistical Mechanics (Springer-Verlag, Berlin, 1982).

    Google Scholar 

  11. D. Forster,Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions (Benjamin, Reading, Massachusetts, 1975).

    Google Scholar 

  12. R. Zwanzig,J. Chem. Phys. 40:2527 (1964).

    Google Scholar 

  13. E. T. Jaynes, inThe Maximum Entropy Formalism, R. D. Levine and M. Tribus, eds. (MIT Press, Cambridge, Massachusetts, 1979), p. 15.

    Google Scholar 

  14. C. K. Wong, J. A. McLennan, M. Lindenfeld, and J. W. Dufty,J. Chem. Phys. 68:1563 (1978).

    Google Scholar 

  15. J. W. Dufty and M. J. Lindenfeld,J. Stat. Phys. 20:259 (1979).

    Google Scholar 

  16. J. Hurley and C. Garrod,Phys. Rev. Lett. 48:1575 (1982).

    Google Scholar 

  17. L. S. García-Colín and J. L. del Rio-Correa,Phys. Rev. A 30:3314 (1984).

    Google Scholar 

  18. R. E. Nettleton,Physica 132A:143 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramshaw, J.D. Elementary derivation of nonlinear transport equations from statistical mechanics. J Stat Phys 45, 983–999 (1986). https://doi.org/10.1007/BF01020585

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01020585

Key words

Navigation