Skip to main content
Log in

A new quantum statistical evaluation method for time correlation functions

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Considering a system ofN identical interacting particles, which obey Fermi-Dirac or Bose-Einstein statistics, we derive new formulas for correlation functions of the type\(C(t) = \langle \Sigma _{i = 1}^N A_i (t) \Sigma _{j = 1}^N B_j \rangle \) (whereB j is diagonal in the free-particle states) in the thermodynamic limit. Thereby we apply and extend a superoperator formalism, recently developed for the derivation of long-time tails in semiclassical systems. As an illustrative application, the Boltzmann equation value of the time-integrated correlation functionC(t) is derived in a straightforward manner. Due to exchange effects, the obtained t-matrix and the resulting scattering cross section, which occurs in the Boltzmann collision operator, are now functionals of the Fermi-Dirac or Bose-Einstein distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Loss and H. Schoeller,Physica A 150:199 (1988).

    Google Scholar 

  2. L. van Hove,Physica 21:517 (1955).

    Google Scholar 

  3. K. Kawasaki and I. Oppenheim,Phys. Rev. 139:A1763 (1965).

    Google Scholar 

  4. J. R. Dorfman and E. G. D. Cohen,Phys. Rev. A 6:776 (1972);12:292 (1975).

    Google Scholar 

  5. J. R. Dorfman,Physica 106A:77 (1981).

    Google Scholar 

  6. R. Kubo, M. Toda, and N. Hashitsume,Statistical Physics II (Springer, 1985).

  7. D. Loss,Physica A 139:505 (1986).

    Google Scholar 

  8. T. R. Kirkpatrick and J. R. Dorfman,J. Stat. Phys. 30:67 (1983); Phys. Rev. A28:1022 (1983).

    Google Scholar 

  9. D. B. Boercker and J. W. Dufty,Phys. Rev. A 23:1952 (1981).

    Google Scholar 

  10. D. B. Boercker and J. W. Dufty,Ann. Phys. 119:43–70 (1979).

    Google Scholar 

  11. C. D. Boley and J. Smith,Phys. Rev. A 12:661 (1975).

    Google Scholar 

  12. O. T. Valls, G. F. Mazenko, and H. Gould,Phys. Rev. B 19:263 (1978).

    Google Scholar 

  13. R. Der,Ann. Phys. 34:298 (1977); R. Der and R. Haberlandt,Physica A 79:597 (1975);86:25 (1977).

    Google Scholar 

  14. R. Balescu,Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, New York, 1975).

    Google Scholar 

  15. J. Lebowitz, J. Percus, and J. Sykes,Phys. Rev. 188:487 (1969); E. P. Gross,Ann. Phys. 69:42 (1972); G. F. Mazenko,Phys. Rev. A 9:360 (1974).

    Google Scholar 

  16. N. N. Bogoliubov,Lectures on Quantum Statistics (Gordon and Breach, New York, 1962), Vol. 1.

    Google Scholar 

  17. E. A. Uehling and G. E. Uhlenbeck,Phys. Rev. 43:552 (1933).

    Google Scholar 

  18. S. T. Choh and G. E. Uhlenbeck,The Kinetic Theory of Dense Gases (University of Michigan, 1958).

  19. S. R. de Groot,La transformation de Weyl et la fonction de Wigner: une forme alternativede la mécanique quantique (Les Presses de l'Université de Montréal, Montréal, 1974).

    Google Scholar 

  20. D. Forster,Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions (Benjamin, Reading, Massachusetts, 1975).

    Google Scholar 

  21. E. Fick and G. Sauermann,Quantenstatistik Dynamischer Prozesse, Vols. I and IIa (Harry Deutsch, Thun-Frankfurt a.M., 1983, 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loss, D., Schoeller, H. A new quantum statistical evaluation method for time correlation functions. J Stat Phys 54, 765–795 (1989). https://doi.org/10.1007/BF01019775

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01019775

Key words

Navigation