Skip to main content
Log in

Solution of the one-dimensional linear Boltzmann equation for charged Maxwellian particles in an external field

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The one-dimensional linear homogeneous Boltzmann equation is solved for a binary mixture of quasi-Maxwellian particles in the presence of a time-dependent external field. It is assumed that the charged particles move in a bath of neutral scatterers. The neutral scatterers are in thermal equilibrium and the concentration of the charged particles is low enough to neglect collisions between them. Two cases are considered in detail, the constant and the periodic external field. The quantities calculated are the equilibrium and the stationary distribution function, respectively, from which any desired property can be derived. The solution of the Boltzmann equation for Maxwellian particles can be reduced to the solution of the so-called cold gas equation by employing the one-dimensional variant of a convolution theorem due to Wannier. The two limiting cases, the Lorentz gas (m A→0) and the Rayleigh gas (m A→∞) are treated explicitly. Furthermore, by computing the central moments, the deviations from the Gaussian approximation are discussed, and in particular the large-velocity tails are evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Piasecki and E. Wajnryb,J. Stat. Phys. 21:549 (1979).

    Google Scholar 

  2. J. Piasecki,J. Stat. Phys. 24:45 (1980);30:185 (1982);35:635 (1983).

    Google Scholar 

  3. A. Gervois and J. Piasecki,J. Stat. Phys. 42:1091 (1986).

    Google Scholar 

  4. S. Chapman and T. G. Cowling,The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, Cambridge, 1970).

    Google Scholar 

  5. T. Kihara,Rev. Mod. Phys. 24:45 (1952);25:844 (1953).

    Google Scholar 

  6. G. H. Wannier,Phys. Rev. 83:281 (1951);87:795 (1952);Bell Syst. Tech. J. 32:170 (1953).

    Google Scholar 

  7. K. Kumar and R. E. Robson,Aust. J. Phys. 26:157 (1973);26:187 (1973).

    Google Scholar 

  8. J. H. Whealton and E. A. Mason,Ann. Phys. (N.Y.)84:8 (1974).

    Google Scholar 

  9. E. W. McDaniel and E. A. Mason,The Mobility and Diffusion of Ions in Gases (Wiley, New York, 1973).

    Google Scholar 

  10. K. Kumar, H. R. Skullerud, and R. E. Robson,Aust. J. Phys. 33:343 (1980).

    Google Scholar 

  11. M. R. Hoare, S. Raval, and M. Rahman,Phil. Trans. R. Soc. Lond. A 305:383 (1982).

    Google Scholar 

  12. O. J. Eder, T. Lackner, and M. Posch, One-dimensional Boltzmann theory for the self-structure factor in a binary Maxwell gas mixture, Austrian Research Center Seibersdorf, Internal Report OEFZS-A1143, PH-452/88.

  13. T. Lackner and M. Posch,Phys. Rev. A 36:5401 (1987).

    Google Scholar 

  14. R. Dickman,J. Stat. Phys. 41:607 (1985).

    Google Scholar 

  15. O. J. Eder and M. Posch,Phys. Rev. A 34:2288 (1986).

    Google Scholar 

  16. G. E. Andrews,The Theory of Partitions (Addison-Wesley, Reading, Massachusetts, 1976).

    Google Scholar 

  17. I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series, and Products (Academic Press, New York, 1980).

    Google Scholar 

  18. M. Abramowitz and I. Stegun, eds.,Handbook of Mathematical Functions (Dover, New York, 1970).

    Google Scholar 

  19. P. M. Morse and H. Feshbach,Methods of Theoretical Physics, Part I (McGraw-Hill, New York, 1953).

    Google Scholar 

  20. S. Chandrasekhar,Rev. Mod. Phys. 15:1 (1943).

    Google Scholar 

  21. A. Erdelyi, ed.,Higher Transcendental Functions, Vol. II, (Krieger, Malabar, Florida, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eder, O.J., Posch, M. Solution of the one-dimensional linear Boltzmann equation for charged Maxwellian particles in an external field. J Stat Phys 52, 1031–1060 (1988). https://doi.org/10.1007/BF01019738

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01019738

Key words

Navigation