Skip to main content
Log in

Hard-sphere heat conductivity via nonequilibrium molecular dynamics

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We use an Evans-Gillan driving forceF d, together with isokinetic and isoenergetic constraint forcesF c, to drive steady heat currents in periodic systems of 4 and 32 hard spheres. The additional driving and constraint forces produce curved trajectories as well as additional streaming and collisional contributions to the momentum and energy fluxes. Here we develop an analytic treatment of the collisions so that the simulation becomes approximately ten times faster than our previous numerical treatment. At low field strengthsλ, forλσ less than 0.4, whereσ is the hard-sphere diameter, the 32-sphere conductivity is consistent with Alder, Gass, and Wainwright's 108-sphere value. At higher field strengths the conductivity varies roughly asλ 1/2, in parallel with the logarithmic dependence found previously for three hard disks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Chapman and T. G. Cowling,The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, 1970).

  2. B. J. Alder and T. E. Wainwright,J. Chem. Phys. 33:1439 (1960).

    Google Scholar 

  3. B. J. Alder, D. M. Gass, and T. E. Wainwright,J. Chem. Phys. 53:3813 (1970).

    Google Scholar 

  4. W. G. Hoover and B. J. Alder,J. Chem. Phys. 46:686 (1967).

    Google Scholar 

  5. W. G. Hoover and F. H. Ree,J. Chem. Phys. 49:3609 (1968).

    Google Scholar 

  6. H. S. Kang, C. S. Lee, T. Ree, and F. H. Ree,J. Chem. Phys. 84:4547 (1986).

    Google Scholar 

  7. W. G. Hoover,Phys. Today 37:44 (1984).

    Google Scholar 

  8. D. J. Evans and W. G. Hoover,Anna. Rev. Fluid Mech. 10:243 (1986).

    Google Scholar 

  9. D. J. Evans,Phys. Lett. 91A:457 (1982).

    Google Scholar 

  10. M. Dixon and M. J. Gillan,J. Phys. C 16:869 (1983).

    Google Scholar 

  11. W. G. Hoover, B. Moran, and J. Haile,J. Stat. Phys. 37:109 (1983).

    Google Scholar 

  12. W. G. Hoover, G. Ciccotti, G. Paolini, and C. Massobrio,Phys. Rev. A 32:3765 (1986).

    Google Scholar 

  13. W. G. Hoover and K. W. Kratky,J. Stat. Phys. 42:1103 (1986).

    Google Scholar 

  14. W. G. Hoover,J. Stat. Phys. 42:587 (1986).

    Google Scholar 

  15. K. W. Kratky,Phys. Rev. A 31:945 (1985).

    Google Scholar 

  16. K. W. Kratky, unpublished results.

  17. J. J. Erpenbeck and W. W. Wood, inStatistical Mechanics, Part B, Bruce J. Berne, ed. (Plenum Press, New York, 1977).

    Google Scholar 

  18. R. Grover, W. G. Hoover, and B. Moran,J. Chem. Phys. 83:1255 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kratky, K.W., Hoover, W.G. Hard-sphere heat conductivity via nonequilibrium molecular dynamics. J Stat Phys 48, 873–900 (1987). https://doi.org/10.1007/BF01019700

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01019700

Key words

Navigation