Skip to main content
Log in

Self-synchronization of populations of nonlinear oscillators in the thermodynamic limit

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A population of identical nonlinear oscillators, subject to random forces and coupled via a mean-field interaction, is studied in the thermodynamic limit. The model presents a nonequilibrium phase transition from a stationary to a time-periodic probability density. Below the transition line, the population of oscillators is in a quiescent state with order parameter equal to zero. Above the transition line, there is a state of collective rhythmicity characterized by a time-periodic behavior of the order parameter and all moments of the probability distribution. The information entropy of the ensemble is a constant both below and above the critical line. Analytical and numerical analyses of the model are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Yamaguchi, K. Kometani, and H. Shimizu,J. Stat. Phys. 26:719 (1981).

    Google Scholar 

  2. Y. Kuramoto,Physica 106A:128 (1981).

    Google Scholar 

  3. R. C. Desai and R. Zwanzig,J. Stat. Phys. 19:1 (1978).

    Google Scholar 

  4. K. Kometani and H. Shimizu,J. Stat. Phys. 13:473 (1975).

    Google Scholar 

  5. D. A. Dawson,J. Stat. Phys. 31:29 (1983).

    Google Scholar 

  6. J. J. Brey, J. M. Casado, and M. Morillo,Physica 128A:497 (1984).

    Google Scholar 

  7. L. L. Boitilla,J. Stat. Phys. 46:659 (1987).

    Google Scholar 

  8. H. Jauslin,J. Stat. Phys. 40:147 (1985).

    Google Scholar 

  9. J. L. Lebowitz and P. G. Bergmann,Ann. Phys. (N.Y.) 1:1 (1957).

    Google Scholar 

  10. G. Iooss and D. D. Joseph,Elementary Stability and Bifurcation Theory (Springer, New York, 1980), Chapter 8; B. D. Hassard, N. D. Kazarinoff, and Y.-H. Wan,Theory and Applications of the Hopf Bifurcation (Cambridge University Press, 1982).

    Google Scholar 

  11. C. J. Thompson,Mathematical Statistical Mechanics (Princeton University Press, 1972), Chapter 4.

  12. L. D. Landau and E. M. Lifshitz,Statistical Physics, 3rd ed., Part 1 (Pergamon Press, New York, 1980), Chapter 14.

    Google Scholar 

  13. M. Abramowitz and I. A. Stegun, eds.,Handbook of Mathematical Functions (Dover, New York, 1965).

    Google Scholar 

  14. M Golubitsky and W. F. Langford,J. Diff. Eqs. 41:375 (1981).

    Google Scholar 

  15. S. Kogelman and J. B. Keller,SIAM J. Appl. Math. 20:619 (1971).

    Google Scholar 

  16. J. B. Keller,Proc. Symp. Appl. Math. 13:227–246 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonilla, L.L., Casado, J.M. & Morillo, M. Self-synchronization of populations of nonlinear oscillators in the thermodynamic limit. J Stat Phys 48, 571–591 (1987). https://doi.org/10.1007/BF01019689

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01019689

Key words

Navigation