Skip to main content
Log in

Local methods for constructing stationary distribution functions of systems of stochastic differential Langevin-type equations: Noise influence on simple bifurcation

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The influence is considered of two additive correlated noise effects on a two-dimensional quadratic-nonlinear system describing the behavior of two hydrodynamic modes. Using the method of Gaussian approximation, local characteristics of the distribution function are calculated, which are used to construct the global distribution function with the aid of the method of fraction-rational approximations. It is shown that for a system at whose bifurcation point the asymptotic stability is lost, in an expanded space of parameters (bifurcation parameter in the absence of noise plus noise parameters) there appears an instability zone within which the stationary distribution function does not exist. The effect of noise correlation on the stationary characteristics of the system is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. D. Bryuno,Local Method of Nonlinear Analysis of Differential Equations (Nauka, Moscow, 1979).

    Google Scholar 

  2. A. V. Turbiner,Usp. Fiz. Nauk 144(1):35–78 (1984).

    Google Scholar 

  3. A. A. Krasovskii,Phase Space and Static Theory of Dynamic Systems (Nauka, Moscow, 1974).

    Google Scholar 

  4. V. I. Tikhonov and N. K. Kul'man,Nonlinear Filtration and Quasicoherent Signal Detection (Sovetskoe radio, Moscow, 1975).

    Google Scholar 

  5. W. Horsthemke and M. Malek-Mansour,Z. Phys. B 24(3):307–313 (1976).

    Google Scholar 

  6. H. E. Schmidt, S. W. Koch, and H. Haug,Z. Phys. B 51:85–91 (1983).

    Google Scholar 

  7. Y. Marimoto,J. Phys. Soc. Jpn. 50(1):28–31 (1981).

    Google Scholar 

  8. W. Horsthemke and R. Lefever,Phys. Lett. 68A(1):19 (1977).

    Google Scholar 

  9. L. Arnold, W. Horsthemke, and R. Lefever,Z. Phys. B 29(1):367–373 (1979).

    Google Scholar 

  10. T. Kawakubo, S. Kabashima, and Y. Tsushiya,Phys. Lett. 70A(5):375 (1979).

    Google Scholar 

  11. S. Kabashima and T. Kawakuba,Suppl. Prog. Theor. Phys. 64:150–161 (1978).

    Google Scholar 

  12. A. Schenzl and H. Brand,Phys. Rev. 20:1628–1647 (1979).

    Google Scholar 

  13. R. Mannella, S. Faetti, P. Grigolini, P. V. E. McClintock, and F. E. Moss,J. Phys. A 19:L699-L704 (1986).

    Google Scholar 

  14. R. L. Stratonovich,Izv. vuzov Radiofiz. 23(8):942–955 (1980).

    Google Scholar 

  15. A. V. Tolstopyatenko and L. Schimansky-Geier,Acta Phys. Polon. A 66(3):197–208 (1984).

    Google Scholar 

  16. A. D. Ventzel and M. I. Freidlin,Fluctuations in Dynamic Systems under the Action of Random Perturbations (Nauka, Moscow, 1979), pp. 75–85.

    Google Scholar 

  17. I. I. Fedchenia, inMaterials of the III All-Union Conference “Fluctuational Phenomena in Physical Systems” (Vilnius, 1982), pp. 52–54.

  18. I. I. Fedchenia,Physica 123A:535–548 (1984).

    Google Scholar 

  19. R. Graham and T. Tél,J. Stat. Phys. 35(5/6):729–748 (1984).

    Google Scholar 

  20. R. Graham and T. Tél,Phys. Rev. A 31:1109–1122.

  21. R. L. Stratonovich,Topics in the Theory of Random Noise, Vol. 1 (Gordon and Breach, New York, 1963).

    Google Scholar 

  22. E. C. Titchmarsh,The Theory of Functions (Oxford University Press, 1939).

  23. E. E. Kazakov,Statistical Dynamics of Systems with Variable Structure (Nauka, Moscow, 1977), pp. 139–143.

    Google Scholar 

  24. M. V. Fedoruk,Saddle-Point Method (Nauka, Moscow, 1977), pp. 28–50.

    Google Scholar 

  25. E. B. Gledzer, F. V. Dolzhnaskii, and A. M. Obukhov,Hydrodynamical Systems and Their Application (Nauka, Moscow, 1981), pp. 251–273.

    Google Scholar 

  26. V. I. Klyatskin,Stochastic Equations and Waves in Randomly Inhomogeneous Media (Nauka, Moscow, 1980).

    Google Scholar 

  27. G. Iooss and D. D. Joseph,Elementary Stability and Bifurcation Theory (Springer-Verlag, New York, 1980).

    Google Scholar 

  28. S. R. Shenoy and G. S. Agarwal,Phys. Rev. A 29:1315 (1984).

    Google Scholar 

  29. F. Moss and G. V. Welland,Phys. Lett. 90A:222–225 (1982).

    Google Scholar 

  30. N. N. Bautin and E. A. Leontowicz,Methods and Techniques of Qualitative Study of Dynamical Systems on the Plane (Nauka, Moscow, 1976).

    Google Scholar 

  31. E. Knobloch and K. A. Wiesenfeld,J. Stat. Phys. 33:611–637 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedchenia, I.I. Local methods for constructing stationary distribution functions of systems of stochastic differential Langevin-type equations: Noise influence on simple bifurcation. J Stat Phys 50, 1043–1068 (1988). https://doi.org/10.1007/BF01019152

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01019152

Key words

Navigation