Skip to main content
Log in

On the wavelet transformation of fractal objects

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The wavelet transformation is briefly presented. It is shown how the analysis of the local scaling behavior of fractals can be transformed into the investigation of the scaling behavior of analytic functions over the half-plane near the boundary of its domain of analyticity. As an example, a “Weierstrass-like” fractal function is considered, for which the wavelet transform is related to a Jacobi theta function. Some of the scalings of this theta function are analyzed, and give some information about the scaling behavior of this fractal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. B. Mandelbrot,Fractals (Freeman, San Francisco, 1977).

    Google Scholar 

  2. J. P. Eckmann and D. Ruelle,Rev. Mod. Phys. 57:617–656 (1985).

    Google Scholar 

  3. T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. I. Shraiman,Phys. Rev. A 33:1141 (1986).

    Google Scholar 

  4. L. S. Young,Ergod. Theor. Dyn. Syst. 2:109.

  5. B. Schoeneberg, Elliptic modular functions, inDie Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Vol. 203.

  6. D. Mumford,Tata Lectures on Theta 1, Birkhäuser, Boston.

  7. T. M. Apostol,Modular Functions and Dirichlel Series in Number Theory (Springer-Verlag).

  8. G. Doetsch,Handbuch der Laplace-Transformationen II (Birkhäuser, Basel, 1955).

    Google Scholar 

  9. P. Bessis, J. S. Geronimo, and P. Moussa,J. Stat. Phys. 34:75–110 (1984).

    Google Scholar 

  10. L. A. Smith, J. D. Fournier, and E. A. Spiegel,Phys. Lett. 114A:465–468 (1986).

    Google Scholar 

  11. A. Grossmann and J. Morlet,Decomposition of Functions into Wavelets of Constant Shape and Related Transforms (World Scientific, Singapore); A. Grossmann, J. Morlet, and T. Paul,J. Math. Phys. 26:2473–2479 (1985); I. Daubchies, A. Grossmann, and Y. Meyer,J. Math. Phys. 27:1271–1283 (1986).

  12. R. Kronland-Martinet, J. Morlet, and A. Grossmann,J. Pattern Recognition Artificial Intelligence (Special Issue on Expert Systems and Pattern Analysis).

  13. P. G. Lemarié and Y. Meyer,Rev. Iberoam. 1:1–18 (1986).

    Google Scholar 

  14. P. Collet, J. Lebowitz, and A. Porgio,J. Stat. Phys. 47:609–644 (1987).

    Google Scholar 

  15. T. Paul,Ann. Inst. H. Poincaré Phys. Theor.

  16. E. M. Stein,Singular Integrals and Differentiability Properties of Functions (Princeton University Press).

  17. M. V. Berry and Z. W. Lewis,Proc. R. Soc. Lond. A 370:459–484 (1980).

    Google Scholar 

  18. R. C. Gunning,Lectures on Modular Forms (Princeton University Press, 1962).

  19. A. Zygmund,Trigonometric Series (Cambridge at the University Press, 1968).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holschneider, M. On the wavelet transformation of fractal objects. J Stat Phys 50, 963–993 (1988). https://doi.org/10.1007/BF01019149

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01019149

Key words

Navigation