Skip to main content
Log in

Nucleation theory for a model bistable chemical reaction

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The theory of homogeneous nucleation is developed for a model nonlinear bistable chemical reaction driven far from equilibrium (trimolecular Schlögl model). The theory is restricted to the vicinity of the stable/unstable transition, where the nucleation barrier is small but nonvanishing. The nucleation rates are derived for two types of fluctuations: first, fluctuations due to a homogeneous external white noise source, and second, internal chemical fluctuations, described by a reastion-diffusion multivariate master equation. In the white noise case, a Landau-Ginzburg potential can be defined, and the standard nucleation formalism can be applied; this is not true for the internal case and a new result is used. The inhomogeneous chemical fluctuations, due to the coupling between the nonlinear reaction and diffusion, are shown to have an influence on the nucleation rate. Quantitative conditions are also given to evaluate the possibility of homogeneous nucleation in nonlinear chemical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Zaikin and A. M. Zhabotinskii,Nature 225:525 (1970).

    Google Scholar 

  2. C. Vidal and P. Hanusse,Int. Rev. Phys. Chem. 5:1 (1986).

    Google Scholar 

  3. A. Hanna, A. Saül, and K. Showalter,J. Am. Chem. Soc. 104:3838 (1982).

    Google Scholar 

  4. R. P. Rastogi, I. Das, M. K. Verma, and A. R. Singh,J. Non-Equilib. Thermodyn. 8:255 (1983).

    Google Scholar 

  5. L. M. Pismen,J. Chem. Phys. 71:462 (1979).

    Google Scholar 

  6. P. C. Fife,J. Chem. Phys. 64:554 (1976).

    Google Scholar 

  7. P. Ortoleva and J. Ross,J. Chem. Phys. 63:3398 (1975).

    Google Scholar 

  8. M. P. Wood and J. Ross,J. Chem. Phys. 82:1924 (1985).

    Google Scholar 

  9. Y. Kuramoto and T. Yamada,Prog. Theor. Phys. 56:724 (1976).

    Google Scholar 

  10. D. Walgraef, G. Dewel, and P. Borckmans,J. Chem. Phys. 78:3043 (1983).

    Google Scholar 

  11. C. Vidal, A. Pagola, J. M. Bodet, P. Hannusse, and E. Bastardie,J. Phys. (Paris) 47:1999 (1986).

    Google Scholar 

  12. D. Borgis, Ph. D. Thesis, Université Paris VI (1986).

  13. J. J. Tyson,Ann. N. Y. Acad. Sci. 316:279 (1979).

    Google Scholar 

  14. J. J. Tyson, inOscillation and Traveling Waves in Chemical Systems, R. J. Fields and M. Burger, eds. (Wiley, New York, 1985).

    Google Scholar 

  15. A. Saül and K. Showalter, inOscillations and Traveling Waves in Chemical Systems, R. J. Fields and M. Berger eds. (Wiley, New York, 1985).

    Google Scholar 

  16. H. Metiu, K. Kitahara, and J. Ross,J. Chem. Phys. 64:292 (1976); M. Büttiker and R. Landauer,Phys. Rev. A 23:1397 (1981).

    Google Scholar 

  17. J. S. Langer,Ann. Phys. (N.Y.) 54:258 (1969).

    Google Scholar 

  18. J. S. Langer,Phys. Rev. Lett. 21:973 (1968).

    Google Scholar 

  19. M. Büttiker and R. Landauer,Phys. Rev. Lett. 43:1453 (1979).

    Google Scholar 

  20. G. Nicolis and I. Prigogine,Self-Organization in Non-Equilibrium Systems (Wiley, New York, 1977).

    Google Scholar 

  21. F. Schlögl,Z. Phys. 253:147 (1972).

    Google Scholar 

  22. E. W. Montroll, inStatistical Mechanics, S. A. Rice, K. F. Freed, and J. C. Light, eds. (University of Chicago Press, 1972).

  23. K. Parkinski and P. Zielinski,Z. Phys. B 44:317 (1981).

    Google Scholar 

  24. L. Landau and E. Lifschitz,Mécanique Quantique (Mir, Moscow, 1966).

    Google Scholar 

  25. S. K. Chan,J. Chem. Phys. 67:5755 (1977).

    Google Scholar 

  26. L. Schimansky-Geier and W. Ebeling,Ann. Phys. (Leipzig) 40:10 (1983).

    Google Scholar 

  27. J. S. Langer,Ann. Phys. (N.Y.) 41:108 (1967).

    Google Scholar 

  28. A. P. Kanzanchian and M. Frankowicz,Acta Phys. Polon. A 60:661 (1981).

    Google Scholar 

  29. H. C. Brinkman,Physica 22:29 (1956).

    Google Scholar 

  30. R. Landauer and J. A. Swanson,Phys. Rev. 121:1668 (1961).

    Google Scholar 

  31. H. Kramers,Physica 7:284 (1940).

    Google Scholar 

  32. H. Lemarchand,Physica 101A:518 (1981).

    Google Scholar 

  33. H. Lemarchand,Bull. Cl. Sci. Acad. Roy. Belg. 67:343 (1981).

    Google Scholar 

  34. H. Lemarchand,Bull. Cl. Sci. Acad. Roy. Belg. 70:40 (1984).

    Google Scholar 

  35. H. Lemarchand and G. Nicolis,J. Stat. Phys. 37:609 (1984).

    Google Scholar 

  36. N. G. van Kampen,Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981).

    Google Scholar 

  37. D. Borgis and M. Moreau, to be published.

  38. A. Nitzan, P. Ortoleva, J. Deutch, and J. Ross,J. Chem. Phys. 61:1056 (1974).

    Google Scholar 

  39. C. Billotet and K. Binder,Z. Phys. B 32:195 (1979).

    Google Scholar 

  40. J. D. Gunton, M. San Miguel, and Paramdeep S. Sahni, inPhase Transitions and Critical Phenomena, Vol. 8, C. Domb and J. L. Lebowitz, eds. (Academic Press, 1985).

  41. M. Malek-Mansour, C. Van Den Broek, G. Nicolis, and J. W. Turner,Ann. Phys. (N.Y.) 131:283 (1981).

    Google Scholar 

  42. J. S. Langer, inProceedings of the Van der Waals Centennial Conference on Statistical Mechanics, C. Prins, ed. (North-Holland, Amsterdam, 1973).

    Google Scholar 

  43. R. Heady and J. W. Cahn,J. Chem. Phys. 58:896 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borgis, D., Moreau, M. Nucleation theory for a model bistable chemical reaction. J Stat Phys 50, 935–962 (1988). https://doi.org/10.1007/BF01019148

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01019148

Key words

Navigation