Skip to main content
Log in

On the stationary distribution of self-sustained oscillators around bifurcation points

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A double expansion in powers of the damping coefficient and noise intensity is shown to be a powerful method for obtaining the stationary distribution of systems that after rescaling become weakly damped conservative ones. Systems undergoing Hopf bifurcations belong to this class. As an illustrative example, the generalized van der Pol oscillator is considered around its bifurcation point. A calculation is carried out up to third order in both the noise intensity and the bifurcation parameter (damping coefficient).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Andronow and C. E. Chaikin,Theory of Oscillations (Princeton University Press, Princeton, 1949).

    Google Scholar 

  2. N. Minorsky,Nonlinear Oscillations (Van Nostrand, New York, 1962).

    Google Scholar 

  3. W. Ebeling,Strukturbildung bei irreversiblen Prozessen (Teubner Verlag, Leipzig, 1976).

    Google Scholar 

  4. G. Nicolis and I. Prigogine,Self-Organization in Nonequilibrium Systems (Wiley, New York, 1977).

    Google Scholar 

  5. H. Haken,Synergetics, An Introduction (Springer-Verlag, Berlin, 1977);Advanced Synergetics (Springer-Verlag, Berlin, 1983).

    Google Scholar 

  6. J. Guckenheimer and P. Holmes,Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer-Verlag, Berlin, 1983).

    Google Scholar 

  7. R. L. Stratonovich,Topics in the Theory of Random Noise (Gordon and Breach, New York, 1963).

    Google Scholar 

  8. Z. Schuss,Theory and Applications of Stochastic Differential Equation (Wiley, New York, 1980).

    Google Scholar 

  9. N. van Kampen,Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981).

    Google Scholar 

  10. P. Hänggi and H. Thomas,Phys. Rep. 88:207 (1982).

    Google Scholar 

  11. C. Gardiner,Handbook of Stochastic Methods (Springer-Verlag, Berlin, 1983).

    Google Scholar 

  12. H. Risken,The Fokker-Planck Equation (Springer-Verlag, Berlin, 1984).

    Google Scholar 

  13. R. Graham and T. Tél,Phys. Rev. A 35:1328 (1987).

    Google Scholar 

  14. J. K. Cohen and R. M. Lewis,J. Inst. Math. Appl. 3:266 (1967).

    Google Scholar 

  15. A. D. Ventzel and M. I. Freidlin,Russ. Math. Surveys 25:1 (1970); M. I. Freidlin and A. D. Ventzel,Random Perturbations of Dynamical Systems (Springer-Verlag, Berlin, 1984).

    Google Scholar 

  16. R. Graham, inCoherence and Quantum Optics, L. Mandel and E. Wolf, eds. (Plenum Press, New York, 1973);

    Google Scholar 

  17. , inFluctuations, Instabilities and Phase Transitions, T. Riste, ed. (Plenum Press, New York, 1975);

    Google Scholar 

  18. , inStochastic Processes in Nonequilibrium Systems, L. Garrido, P. Seglar, and P. J. Shephard, eds. (Springer-Verlag, Berlin, 1978);

    Google Scholar 

  19. , inStochastic Nonlinear Systems, L. Arnold and R. Lefever, eds. (Springer-Verlag, Berlin, 1981).

    Google Scholar 

  20. R. Kubo, K. Matsuo, and K. Kitahara,J. Stat. Phys. 9:51 (1973).

    Google Scholar 

  21. Yu. Kifer,Math. SSSR Izv. 8:1083 (1974).

    Google Scholar 

  22. D. Ludwig,SIAM Rev. 17:605 (1975).

    Google Scholar 

  23. K. Kitahara,Adv. Chem. Phys. 29:85 (1975).

    Google Scholar 

  24. R. Graham and A. Schenzle,Phys. Rev. A 23:1302 (1981); H. Schmidt, S. W. Koch, and H. Haug,Z. Phys. B 51:85 (1983); P. Talkner and P. Hänggi,Phys. Rev. A 29:768 (1984).

    Google Scholar 

  25. B. J. Matkowsky and Z. Schuss,SIAM J. Appl. Math. 42:822 (1982);Phys. Lett. 95A:213 (1983); E. Ben-Jacob, D. J. Bergmann, B. J. Matkowsky, and Z. Schuss,Phys. Rev. A 26:2805 (1982).

    Google Scholar 

  26. P. Talkner and D. Ryter,Phys. Lett. 88A:163 (1982); inNoise in Physical Systems and 1/f Noise (North-Holland, Amsterdam, 1983); D. Ryter,Physica 130A:205 (1985);142A:103 (1987); P. Talkner,Z. Phys. B 68:201 (1987).

    Google Scholar 

  27. W. G. Faris and G. Jona-Lasinio,J. Phys. A 15:3025 (1982); G. Jona-Lasinio, inTurbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, N. Ghil, R. Benzi, and G. Parisi, eds. (North-Holland, Amsterdam, 1985).

    Google Scholar 

  28. M. Dörfle and R. Graham,Phys. Rev. A 27:1096 (1983).

    Google Scholar 

  29. R. Graham and A. Schenzle,Z. Phys. 52:61 (1983).

    Google Scholar 

  30. R. Graham and T. Tél,Phys. Rev. Lett. 52:9 (1984);

    Google Scholar 

  31. ,J. Stat. Phys. 35:729 (1984);

    Google Scholar 

  32. ,Phys. Rev. A 31:1109 (1985);

    Google Scholar 

  33. ,Phys. Rev. A 33:1322 (1986).

    Google Scholar 

  34. H. Lemarchand and G. Nicolis,J. Stat. Phys. 37:609 (1984).

    Google Scholar 

  35. R. Graham, D. Roekaerts, and T. Tél,Phys. Rev. A 31:3364 (1985); D. Roekaerts and F. Schwarz,J. Phys. A 20:L127 (1987).

    Google Scholar 

  36. A. Schenzle and T. Tél,Phys. Rev. A 32:596 (1986).

    Google Scholar 

  37. H. R. Jauslin,J. Stat. Phys. 42:573 (1986);Physica 144A:179 (1987).

    Google Scholar 

  38. R. Reibold,Z. Phys. B 62:397 (1986).

    Google Scholar 

  39. R. Graham,Europhys. Lett. 2:901 (1986).

    Google Scholar 

  40. P. Hänggi,J. Stat. Phys. 42:105 (1986).

    Google Scholar 

  41. V. Altares and G. Nicolis,J. Stat. Phys. 46:191 (1987); E. Sulpice, A. Lemarchand, and H. Lemarchand,Phys. Lett. 121A:67 (1987).

    Google Scholar 

  42. R. Graham, Macroscopic potentials, bifurcations and noise in dissipative system, preprint (1987).

  43. B. van der Pol,Phil. Mag. 3:65 (1927); M. L. Cartwright and J. E. Littlewood,J. Land. Math. Soc. 20:180 (1945); P. Holmes and D. Rand,Q. Appl. Math. 35:495 (1978); U. Parlitz and W. Lauterborn,Phys. Rev. A 36:1428 (1987).

    Google Scholar 

  44. F. Baras, M. Malek Mansour and C. Van den Broeck,J. Stat. Phys. 28:577 (1982); D. Ryter, P. Talkner, and P. Hänggi,Phys. Lett. 93A:447 (1983); P. Hänggi and P. Riseborough,Am. J. Phys. 51:347 (1983).

    Google Scholar 

  45. L. Schimansky-Geier, A. V. Tolstopyatenko, and W. Ebeling,Phys. Lett. 108A:329 (1985); W. Ebeling and L. Simansky-Geier,Fluid Dyn. Trans. 12:7 (1985).

    Google Scholar 

  46. W. Ebeling, H. Herzel, W. Richert, and L. Schimansky-Geier,Z. Angew. Math. Mech. 66:141 (1986).

    Google Scholar 

  47. H. Haken,Phys. Rev. Lett. 13:329 (1964); H. Risken,Z. Phys. 186:85 (1965); R. Graham,Quantum Statistics in Optics and Solid-State Physics (Springer-Verlag, 1973).

    Google Scholar 

  48. K. H. Hoffman,Z. Phys. B 49:245 (1982).

    Google Scholar 

  49. Lord Rayleigh,Theory of Sound, Vol. I (Dover, New York, 1945).

    Google Scholar 

  50. M. O. Hongler and D. Ryter,Z. Phys. B 31:333 (1978); W. Ebeling and H. Engel-Herbert,Physica 104A:378 (1981).

    Google Scholar 

  51. R. Graham and H. Haken,Z. Phys. 243:289 (1971);245:141 (1971).

    Google Scholar 

  52. H. Risken and K. Voigtlander,J. Stat. Phys. 41:825 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tél, T. On the stationary distribution of self-sustained oscillators around bifurcation points. J Stat Phys 50, 897–912 (1988). https://doi.org/10.1007/BF01019146

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01019146

Key words

Navigation