Skip to main content
Log in

Algorithmic treatment of the spin-echo effect

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We analyze the apparent increase in entropy in the course of the spin-echo effect using algorithmic information theory. We show that although the state of the spins quickly becomes algorithmically complex, then simple again during the echo, the overall complexity of spins together with the magnetic field grows slowly, as the logarithm of the elapsed time. This slow increase in complexity is reflected in an increased difficulty in taking advantage of the echo pulse. Our discussion illustrates the fundamental role of algorithmic information content in the formulation of statistical physics, including the second law of thermodynamics, from the viewpoint of the observer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. L. Hahn,Phys. Rev. 80:580–594 (1950).

    Google Scholar 

  2. W.-K. Rhim, A. Pines, and J. S. Waugh,Phys. Rev. B 3:684–696 (1971).

    Google Scholar 

  3. W. H. Zurek,Phys. Rev. A 40:4731–4751 (1989).

    Google Scholar 

  4. W. H. Zurek,Phys. Rev. Lett. 53:391–394 (1984).

    Google Scholar 

  5. E. T. Jaynes and F. W. Cummings,Proc. I.R.E. 51:89–109 (1963).

    Google Scholar 

  6. R. J. Glauber,Phys. Rev. 131:2766–2788 (1963).

    Google Scholar 

  7. W. K. Wootters and W. H. Zurek,Phys. Rev. D 19:473–484 (1979).

    Google Scholar 

  8. R. J. Solomonoff,Information Control 7:1–22 (1964).

    Google Scholar 

  9. A. N. Kolmogorov,Inf. Transmission 1:3–11 (1965).

    Google Scholar 

  10. A. N. Koimogorov,IEEE Trans. Inf. Theor. 14:622–664 (1968).

    Google Scholar 

  11. A. N. Kolmogorov,Usp. Mat. Nauk 25:602–613 (1970).

    Google Scholar 

  12. G. J. Chaitin,J. ACM 13:547–569 (1966).

    Google Scholar 

  13. G. J. Chaitin,Sci. Am. 232:47–52 (1975).

    Google Scholar 

  14. G. J. Chaitin,IBM J. Res. Dev. 21:350–359 (1977).

    Google Scholar 

  15. G. J. Chaitin,Algorithmic Information Theory (Cambridge University Press, 1987).

  16. R. W. Hamming,Coding and Information Theory (Prentice-Hall, Englewood Cliffs, New Jersey, 1986).

    Google Scholar 

  17. C. H. Bennett,Int. J. Theor. Phys. 21:905–940 (1982).

    Google Scholar 

  18. W. H. Zurek,Nature 341:119–124 (1989).

    Google Scholar 

  19. L. Szilard,Z. Phys. 53:840–856 (1929);Behav. Sci. 9:301–310 (1964).

    Google Scholar 

  20. R. Landauer,IBM J. Res. Dev. 5:183–191 (1961).

    Google Scholar 

  21. R. Landauer,Nature 335:779–784 (1988).

    Google Scholar 

  22. C. H. Bennett,Sci. Am. 257:108 (1987).

    Google Scholar 

  23. C. M. Caves, inComplexity, Entropy and the Physics of Information, W. H. Zurek, ed. (Addison-Wesley, New York, 1990).

    Google Scholar 

  24. A. K. Zvonkin and L. A. Levin,Uspekhi Mat. Nauk 25(6):85–128 (1970) [English translation inRuss. Math. Surveys 25(6):83–124 (1970)].

    Google Scholar 

  25. J. Rothstein,Am. J. Phys. 24:510–518 (1957).

    Google Scholar 

  26. S. Lloyd,Phys. Rev. A 39:5378–5386 (1989).

    Google Scholar 

  27. R. P. Feynman, R. J. Leighton, and M. Sands,The Feynman Lectures in Physics (Addison-Wesley, Reading, Massachusetts, 1965).

    Google Scholar 

  28. M. C. Teich and B. E. A. Saleh,Physics Today 43:26–34 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lloyd, S., Zurek, W.H. Algorithmic treatment of the spin-echo effect. J Stat Phys 62, 819–839 (1991). https://doi.org/10.1007/BF01017985

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01017985

Key words

Navigation