Skip to main content
Log in

Effective interactions in dilute mixtures of3He in4He

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Nonlocal pseudopotentials which describe the effective interaction between3He quasiparticles, and between these quasiparticles and the background4He liquid, are obtained as a function of concentration and pressure by generalizing the Aldrich-Pines pseudopotentials for pure3He and4He to dilute mixtures. The hierarchy of physical effects which determine these pseudopotentials is established. Interaction-induced short-range correlations are the dominant physical feature; next in order of importance is the greater zero point motion associated with the replacement of a4He atom by a3He atom, while spin-induced “Pauli principle” correlations play a significantly smaller, albeit still important role. We find a consistent trend in the change of the effective direct quasiparticle interactions with increasing concentration, and show how the Aldrich-Pines pseudopotentials for pure3He quasiparticles represent a natural extension of our results for dilute mixtures. Our calculated nonlocal pseudopotential for3He quasiparticles is qualitatively similar to that proposed by Bardeen, Baym, and Pines; it changes sign at somewhat lower momentum transfers than the BBP result, varies little with concentration, and provides a physical basis for understanding the BBP result. The effective interaction between quasiparticles of parallel spin, here determined for the first time, is essentially repulsive in the very dilute limit; as the concentration increases, it becomes increasingly attractive at low momentum transfers, and resembles closely that between antiparallel spin quasiparticles at 5% concentration. The concentration-dependent transport properties calculated from these pseudopotentials (which involve only one phenomenological parameter) are in good agreement with experiment at saturated vapor pressure (SVP), 10 atm, and 20 atm. Maxima in the thermal conductivity and spin diffusion are predicted to occur at concetrations somewhat less than 4%. Because the effective quasiparticle interactions are somewhat more repulsive than those previously proposed, we find the transition of the3He quasiparticles to the superfluid state takes place at significantly lower temperatures than many previous estimates; our predicted maximum superfluid transition temperature is 2×10−8 K (for a 0.6% mixture at 20 atm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. O. Edwards, D. F. Brewer, P. Seligmann, M. Skertic, and M. Yaqub,Phys. Rev. Lett. 15:773 (1965).

    Google Scholar 

  2. A. C. Anderson, D. O. Edwards, W. R. Roach, R. E. Sarwinski, and J. C. Wheatley,Phys. Rev. Lett. 17:367 (1966).

    Google Scholar 

  3. J. Bardeen, G. Baym, and D. Pines,Phys. Rev. 156:207 (1967).

    Google Scholar 

  4. W. R. Abel, R. T. Johnson, J. C. Wheatley, and W. Zimmerman, Jr.,Phys. Rev. Lett. 18:737 (1967).

    Google Scholar 

  5. C. Ebner,Phys. Rev. 185:392 (1969).

    Google Scholar 

  6. H. H. Fu and C. J. Pethick,Phys. Rev. B 14:3837 (1976).

    Google Scholar 

  7. E. S. Murdock, K. R. Mountfield, and L. R. Corruccini,J. Low Temp. Phys. 31:581 (1978).

    Google Scholar 

  8. E. P. Bashkin,Sov. Phys. JETP 46(5):972 (1977).

    Google Scholar 

  9. J. R. Owers-Bradley, H. Chocholacs, R. M. Mueller, Ch. Buchai, M. Kubota, and F. Pobell,Phys. Rev. Lett. 51:2120 (1983).

    Google Scholar 

  10. C. H. Aldrich III and D. Pines,J. Low Temp. Phys. 25:677 (1976).

    Google Scholar 

  11. C. H. Aldrich III and D. Pines,J. Low Temp. Phys. 32:689 (1978).

    Google Scholar 

  12. D. Pines,Excitations and Transport in Quantum Liquids, Proceedings of the International School of Physics “Enrico Fermi,” Varenna, Italy, 28 June–16 July 1983.

  13. J. M. Rowe, D. L. Price, and G. E. Ostrowski,Phys. Rev. Lett. 31:510 (1973).

    Google Scholar 

  14. P. A. Hilton, R. Scherm, and W. G. Stirling,J. Low Temp. Phys. 27:851 (1977).

    Google Scholar 

  15. W. Hsu, Ph.D. thesis, University of Illinois, 1984 (unpublished); W. Hsu and D. Pines, in preparation.

  16. D. Pines and P. Nozières,Theory of Quantum Liquids, Vol. 1 (W. A. Benjamin, Inc., New York, 1966).

    Google Scholar 

  17. C. H. Aldrich III, Ph.D. thesis, University of Illinois, 1974 (unpublished).

  18. K. Bedell, W. Hsu, and D. Pines, in preparation.

  19. K. Bedell and D. Pines,Phys. Rev. Lett. 45:39 (1980).

    Google Scholar 

  20. A. I. Ahonen, M. A. Paalanen, R. C. Richardson, and Y. Takano,J. Low Temp. Phys. 25:733 (1976).

    Google Scholar 

  21. I. M. Khalatnikov,Sov. Phys. JETP 28:1014 (1969).

    Google Scholar 

  22. L. R. Corruccini, to be published.

  23. R. A. Sherlock and D. O. Edwards,Phys. Rev. A 8:2744 (1973).

    Google Scholar 

  24. D. S. Greywall,Phys. Rev. B 27:2747 (1983).

    Google Scholar 

  25. R. A. Cowley and A. D. B. Woods,Can. J. Phys. 49:177 (1971).

    Google Scholar 

  26. W. Hsu, K. Bedell, and D. Pines, in preparation.

  27. See G. Baym and C. J. Pethick, inThe Physics of Liquid and Solid Helium, Part II, K. H. Bennemann and J. B. Ketterson, eds. (1978).

  28. D. J. Fisk and H. E. Hall,Proc. LT13, Vol. 1, p. 568 (1972).

    Google Scholar 

  29. B. R. Patton and A. Zaringhalam,Phys. Lett. 55A:95 (1975).

    Google Scholar 

  30. L. R. Corruccini, D. D. Osheroff, D. M. Lee, and R. C. Richardson,J. Low, Temp. Phys. 8:229 (1972).

    Google Scholar 

  31. D. Greywall,Phys. Rev. B 20:2643 (1979).

    Google Scholar 

  32. H. C. Chocolacs, R. M. Mueller, J. R. Owers-Bradley, Ch. Buchal, M. Kubota, and F. Pobell,Proc. LT17, to be published.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, W., Pines, D. Effective interactions in dilute mixtures of3He in4He. J Stat Phys 38, 273–312 (1985). https://doi.org/10.1007/BF01017863

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01017863

Key words

Navigation