Skip to main content
Log in

Dynamic percolation transition induced by phase separation: A Monte Carlo analysis

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The percolation transition of geometric clusters in the three-dimensional, simple cubic, nearest neighbor Ising lattice gas model is investigated in the temperature and concentration region inside the coexistence curve. We consider “quenching experiments,” where the system starts from an initially completely random configuration (corresponding to equilibrium at infinite temperature), letting the system evolve at the considered temperature according to the Kawasaki “spinexchange” dynamics. Analyzing the distributionn l(t) of clusters of sizel at timet, we find that after a time of the order of about 100 Monte Carlo steps per site a percolation transition occurs at a concentration distinctly lower than the percolation concentration of the initial random state. This dynamic percolation transition is analyzed with finite-size scaling methods. While at zero temperature, where the system settles down at a frozen-in cluster distribution and further phase separation stops, the critical exponents associated with this percolation transition are consistent with the universality class of random percolation, the critical behavior of the transient time-dependent percolation occurring at nonzero temperature possibly belongs to a different, new universality class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Gunton, M. San Miguel, and P. S. Sahni, inPhase Transitions and Critical Phenomena, Vol. 8, C. Domb and J. L. Lebowitz, eds. (Academic Press, New York, 1983), p. 267.

    Google Scholar 

  2. K. Binder, inCondensed Matter Research Using Neutrons, S. W. Lovesey and R. Scherm, eds. (Plenum Press, New York, 1984), p. 1.

    Google Scholar 

  3. K. Binder,Rep. Progr. Phys. 50:783 (1987).

    Google Scholar 

  4. A. C. Zettlemoyer (ed.),Nucleation (Dekker, New York, 1969).

    Google Scholar 

  5. F. F. Abraham,Homogeneous Nucleation Theory (Academic Press, New York, 1974).

    Google Scholar 

  6. K. Binder and D. Stauffer,Adv. Phys. 25:343 (1976).

    Google Scholar 

  7. J. W. Cahn,Acta Met. 9:795 (1961).

    Google Scholar 

  8. J. W. Cahn,Trans. Met. Soc. AIME 242:166 (1968).

    Google Scholar 

  9. J. S. Langer,Ann. Phys. 65:53 (1971);Acta Met. 21:1649 (1973); J. S. Langer, M. Baron, and H.-D. Miller,Phys. Rev. A 11:1417 (1975).

    Google Scholar 

  10. J. W. Cahn and J. E. Milliard,J. Chem. Phys. 31:688 (1959).

    Google Scholar 

  11. J. D. Gunton and M. C. Yalabik,Phys. Rev. B 18:6199 (1978); G. Dee, J. D. Gunton, and K. Kawasaki,J. Stat. Phys. 24:87 (1981).

    Google Scholar 

  12. W. Klein,Phys. Rev. Lett. 47:1569 (1981).

    Google Scholar 

  13. W. Klein and C. Unger,Phys. Rev. B 28:445 (1983); C. Unger and W. Klein,Phys. Rev. B 29:2698 (1984).

    Google Scholar 

  14. K. Binder,Phys. Rev. A 29:34 (1984).

    Google Scholar 

  15. R. B. Griffiths, C. Y. Weng, and J. S. Langer,Phys. Rev. 149:301 (1966).

    Google Scholar 

  16. O. Penrose and J. L. Lebowitz,J. Stat. Phys. 3:211 (1971).

    Google Scholar 

  17. K. Binder,Phys. Rev. B 8:3423 (1973).

    Google Scholar 

  18. D. W. Heermann, W. Klein, and D. Stauffer,Phys. Rev. Lett. 49:1262 (1982).

    Google Scholar 

  19. D. W. Heermann,Phys. Rev. Lett. 52:1126 (1984);Z. Phys. B 61:311 (1985).

    Google Scholar 

  20. K. Kaski, K. Binder, and J. D. Gunton,Phys. Rev. B 29:3996 (1984).

    Google Scholar 

  21. K. Binder, C. Billotet, and P. Minold,Z. Phys. B 30:1183 (1978).

    Google Scholar 

  22. D. Stauffer,Phys. Rep. 54:1 (1979).

    Google Scholar 

  23. J. W. Essam,Rep. Progr. Phys. 43:843 (1980).

    Google Scholar 

  24. D. Stauffer,An Introduction to Percolation Theory (Taylor and Francis, London, 1985).

    Google Scholar 

  25. A. Coniglio,J. Phys. A 8:1773 (1975); A. Coniglio, F. Peruggi, C. Nappi, and L. Russo,J. Phys. A 10:205 (1977).

    Google Scholar 

  26. H. Müller-Krumbhaar,Phys. Lett. 50A:27 (1974).

    Google Scholar 

  27. D. W. Heermann and D. Stauffer,Z. Phys. 44:339 (1981).

    Google Scholar 

  28. D. W. Heermann,Z. Phys. B 55:309 (1984).

    Google Scholar 

  29. A. Coniglio and W. Klein,J. Phys. A 13:2775 (1980).

    Google Scholar 

  30. C.-K. Hu,Phys. Rev. B 29:5103 (1984).

    Google Scholar 

  31. D. W. Heermann and W. Klein,Phys. Rev. B 27:1732 (1983).

    Google Scholar 

  32. K. Binder,Solid State Commun. 34:191 (1980).

    Google Scholar 

  33. B. B. Mandelbrot,Fractals: Form, Chance, and Dimension (Freeman, San Francisco, 1977);The Fractal Geometry of Nature (Freeman, San Francisco, 1982).

    Google Scholar 

  34. M. Schöbinger, S. W. Koch, and F. F. Abraham,J. Stat. Phys. 42:1071 (1986); S. W. Koch, inAdvances on Phase Transitions and Disorder Phenomena, G. Busiello, L. De Cesare, F. Mancini, and M. Marinaro, eds. (World Scientific, Singapore, 1987), p. 72; R. C. Desai and A. R. Denton, inOn Growth and Form, (H. E. Stanley and N. Ostrowsky, eds. (Martinus Nishoff, Boston, 1986), p. 237.

    Google Scholar 

  35. K. Binder and D. W. Heermann, inScaling Phenomena in Disordered Systems, R. Pynn and A. Skjeltorp, eds. (Plenum Press, New York, 1985), p. 207.

    Google Scholar 

  36. H. Furukawa,Adv. Phys. 34:703 (1986).

    Google Scholar 

  37. K. Binder,Phys. Rev. B 15:4424 (1977); K. Binder and D. Stauffer,Phys. Rev. Lett. 33:1006 (1974); K. Binder and M. H. Kalos,J. Stat. Phys. 22:3363 (1980).

    Google Scholar 

  38. M. N. Barber, inPhase Transitions and Critical Phenomena, Vol. 8, C. Domb and J. L. Lebowitz, eds. (Academic Press, New York, 1983), p. 146; M. E. Fisher and M. N. Barber,Phys. Rev. Lett. 28:1516 (1972).

    Google Scholar 

  39. K. Binder,Ferroelectrics 73:43 (1987); see also K. Binder,Z. Phys. B 43:119 (1981).

    Google Scholar 

  40. A. Margolina and H. J. Herrmann,Phys. Lett. 104A:295 (1984).

    Google Scholar 

  41. K. Kawasaki, inPhase Transitions and Critical Phenomena, Vol. 2, C. Domb and M. S. Green, eds. (Academic Press, New York, 1972), p. 443.

    Google Scholar 

  42. K. Binder and M. H. Kalos, inMonte Carlo Methods in Statistical Physics, K. Binder, ed. (Springer, Berlin, 1979), p. 225.

    Google Scholar 

  43. D. W. Heermann,Introduction to Computer Simulation Methods in Theoretical Physics (Springer, Berlin, 1986).

    Google Scholar 

  44. S. Hayward, Diplomarbeit, Johannes-Gutenberg-Universität, Mainz (1987), unpublished.

    Google Scholar 

  45. D. W. Heermann, Thesis, Boston University (1983), unpublished.

  46. P. A. Meakin and S. Reich,Phys. Lett. 92A:247 (1982); A. Levy, S. Reich, and P. Meakin,Phys. Lett. 87A:248 (1982); R. G. Palmer and H. L. Frisch,J. Stat. Phys. 38:867 (1985).

    Google Scholar 

  47. K. Binder,Z. Phys. B 43:119 (1981).

    Google Scholar 

  48. S. Kirpatrick, inIll-Condensed Matter, R. Balian, R. Maynard, and G. Toulouse, eds. (North-Holland, Amsterdam, 1979), p. 321.

    Google Scholar 

  49. K. Binder and D. Stauffer, inApplications of the Monte Carlo Method in Statistical Physics, K. Binder, ed. Springer, Berlin, 1984), p. 1.

    Google Scholar 

  50. K. Binder and D. Stauffer, inApplications of the Monte Carlo Method in Statistical Physics, K. Binder, ed. (Springer, Berlin, 1984), Chapter 8.

    Google Scholar 

  51. H. J. Herrmann,Phys. Rep. 136:154 (1986).

    Google Scholar 

  52. I. M. Lifshitz and V. V. Slyozov,J. Phys. Chem. Solids 19:35 (1961).

    Google Scholar 

  53. J. J. Weins and J. W. Cahn, inSintering and Related Phenomena, G. C. Kuczynski, ed. (Plenum Press, New York, 1973), p. 151.

    Google Scholar 

  54. K. Kawasaki and T. Ohta,Physica 118A:175 (1983); M. Tokuyama and K. Kawasaki,Physica 123A:386 (1984).

    Google Scholar 

  55. T. Ohta,Ann. Phys. 158:31 (1984);Progr. Theor. Phys. 71:1409 (1984).

    Google Scholar 

  56. J. A. Marqusee and J. Ross,J. Chem. Phys. 80:536 (1984).

    Google Scholar 

  57. H. Tomita,Progr. Theor. Phys. 71:1405 (1984);72:656 (1984).

    Google Scholar 

  58. M. Tokuyama, Y. Enomoto, and K. Kawasaki, preprints.

  59. H. Furukawa,Phys. Rev. A 29:2160 (1984);A 30:1052 (1984);Physica A 123:497 (1984);Progr. Theor. Phys. 73:586 (1985).

    Google Scholar 

  60. P. W. Voorhees,J. Stat. Phys. 38:231 (1985); P. W. Voorhees and M. E. Glicksman,Acta Met. 32:2001, 2013 (1984).

    Google Scholar 

  61. J. S. Langer and A. J. Schwartz,Phys. Rev. A 21:948 (1980); R. Kampmann and R. Wagner, inDecomposition of Alloys: The Early Stages, P. Haasen, V. Gerold, R. Wagner, and M. F. Ashby, eds. (Pergamon Press, 1984), p. 143.

    Google Scholar 

  62. P. W. Voorhees and M. E. Glicksman,Met. Trans. A 15:1081 (1984); see also W. J. Beenakker and J. Ross,J. Chem. Phys. 83:4710 (1985).

    Google Scholar 

  63. C. W. J. Beenakker, preprint; C. W. J. Beenakker and J. Ross, preprint.

  64. M. P. Marder, preprint.

  65. H. Scher and R. Zallen,J. Chem. Phys. 53:3759 (1970).

    Google Scholar 

  66. I. Webman, J. Jortner, and M. H. Cohen,Phys. Rev. B 14:4737 (1976).

    Google Scholar 

  67. G. S. Grest and D. J. Srolovitz,Phys. Rev. B 30:5150 (1984).

    Google Scholar 

  68. D. W. Heermann and W. Klein,Phys. Rev. Lett. 50:1062 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayward, S., Heermann, D.W. & Binder, K. Dynamic percolation transition induced by phase separation: A Monte Carlo analysis. J Stat Phys 49, 1053–1081 (1987). https://doi.org/10.1007/BF01017560

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01017560

Key words

Navigation