Skip to main content
Log in

On the Euler characteristics of random surfaces

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In a Monte Carlo computer experiment, we simulate the Gibbs distribution of nonconnected two-dimensional surfaces isometrically embedded in three-dimensional Euclidean space with fixed boundary and the action given by the area. The simulation involves surfaces built out of plaquettes in a cubical lattice. The foam structure is analyzed in terms of correlations of the local fluctuations in the Euler characteristic and the area. The scaling behavior of the area and the Euler characteristic is discussed by varying the boundary. We show evidence of a phase transition point which is independent of the choice of the boundary. An existence proof is given of the thermodynamic limit for the models considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Polyakov, Quantum Geometry of Bosonic Strings,Phys. Lett. 103B:207–210 (1981).

    Google Scholar 

  2. O. Alvarez, Theory of Strings with Boundaries: Fluctuations, Topology and Quantum Geometry,Nucl. Phys. B216:125–184 (1983).

    Google Scholar 

  3. D. Friedan, Introduction to Polykovs String Theory, Talk given at the “Copenhagen Workshop on String Models,” October 1981.

  4. T. Eguchi, Strings inU(N) Lattice Gauge Theory,Phys. Lett. 87B:91–96 (1979).

    Google Scholar 

  5. T. Eguchi and H. Kawai, Planar Random Surfaces on the Lattice,Phys. Lett. 114B:247–250 (1982).

    Google Scholar 

  6. D. Förster, How to Sum the Planar Diagrams: A Reformulation ofU(N) Lattice Gauge Theory, forN → ∞, in Terms of a Statistical Ensemble of Non-Interacting Random Surfaces,Nucl. Phys. B170:107–127 (1980).

    Google Scholar 

  7. A. A. Migdal, QCD=Fermi String Theory,Nucl. Phys. B189:253–294 (1981).

    Google Scholar 

  8. G. Münster, High-Temperature Expansions for the Free Energy of Vortices and String Tension in Lattice Gauge Theories,Nucl. Phys. B180:23–60 (1981).

    Google Scholar 

  9. G. Parisi, Hausdorff Dimensions and Gauge Theories,Phys. Lett. 81B:357–360 (1979).

    Google Scholar 

  10. D. Weingarten, Pathological Lattice Field Theory for Interacting Strings,Phys. Lett. 90B:280–284 (1980).

    Google Scholar 

  11. K. Wilson, Confinement of Quarks,Phys. Rev. D 10:2445–2459 (1974).

    Google Scholar 

  12. A. B. Zamolodchikov, On the Entropy of Random Surfaces,Phys. Lett. 117B:87–90 (1982).

    Google Scholar 

  13. A. Maritan and C. Umero, TheN → 0 Limit of a Non-Abelian Gauge Theory: A Model for Self-Avoiding Random Surfaces,Phys. Lett. 109B:51–53 (1982).

    Google Scholar 

  14. B. Durhuus and J. Fröhlich, A Connection Betweenν-Dimensional Yang-Mills Theory and (ν-1)-Dimensional, Non-linearτ-Models,Commun. Math. Phys. 75:103–151 (1980).

    Google Scholar 

  15. B. Durhuus, J. Fröhlich, and T. Jonsson, Self-Avoiding and Planar-Random Surfaces on the Lattice,Nucl. Phys. B225:185–203 (1983).

    Google Scholar 

  16. P. G. De Gennes, Exponents for the Extended Volume Problem as Derived by the Wilson Method,Phys. Lett. 38A:339–340 (1972).

    Google Scholar 

  17. J. Des Cloiseaux, The Lagrangean Theory of Polymer Solutions at Intermediate Concentrations,J. Phys. (Paris) 36:281–291 (1975).

    Google Scholar 

  18. K. Symanzik, Euclidean Quantum Field Theory, inLocal Quantum Theory, R. Jost (ed.) (Academic, New York, 1969).

    Google Scholar 

  19. P. Gotta-Ramusino and G. Dell'Antonio, Self-Duality and Topological-like Properties of Lattice Gauge Fields, A Proposal,Commun. Math. Phys. 70:75–90 (1979).

    Google Scholar 

  20. M. Lüscher, Topology of Lattice Gauge Fields,Commun. Math. Phys. 85:39–48 (1982).

    Google Scholar 

  21. A. Phillips, Characteristic Numbers ofU 1Valued Lattice Gauge Fields, preprint, Mathematics Department S.U.N.Y. at Stony Brook (1984).

  22. T. Gioto, Relativistic Quantum Mechanics of Two-Dimensional Mechanical Continuum and Subsidiary Condition of Dual Resonance Model,Progr. Theor. Phys. 46:1560–1569 (1971).

    Google Scholar 

  23. Y. Nambu, Talk presented at the American Physical Society meeting in Chicago (1970), Univ. of Chicago preprint EFL 70-07

  24. J. Cheeger and M. Gromov, On the Characteristic Numbers of Complete Manifolds of Bounded Curvature and Finite Volume, to Appear in Rauch Memorial Volume, J. Chavel and H. Farkas, eds.

  25. J. A. Wheeler, Geometrodynamics and the Issue of the Final State, inRelativity, Groups and Topology, C. deWitt and B. deWitt (eds.) (Gordon and Breach, New York, 1964).

    Google Scholar 

  26. M. Aizenmann, F. T. Chayes, L. Chayes, J. Fröhlich, and L. Russo, On a Sharp Transition from the Area Law to the Perimeter Law in a System of Random Surfaces,Commun. Math. Phys. 19:19–70 (1984).

    Google Scholar 

  27. J. Nash, The embedding Problem for Riemannian Manifolds,Ann. Math. (2) 63:20–63 (1956).

    Google Scholar 

  28. E. H. Spanier,Algebraic Topology (McGraw-Hill, New York, 1966).

    Google Scholar 

  29. D. Ruelle,Statistical Mechanics, Rigorous Results (Benjamin, New York, 1969).

    Google Scholar 

  30. B. Balian, J. M. Drouffe, and C. Itzykson, Gauge Fields on a Lattice. Gauge Invariant Ising Model,Phys. Rev. D 11:2098–2103 (1975).

    Google Scholar 

  31. J. M. Drouffe and J. B. Zuber, Strong Coupling and Mean Field Methods in Lattice Gauge Theories,Phys. Rep. 102:2–119 (1983).

    Google Scholar 

  32. T. Regge, General Relativity Without Coordinates,Nuovo Cimento 19:558–571 (1961).

    Google Scholar 

  33. J. Cheeger, W. Müller, and R. Schrader, On Curvatures of Piecewise Linear Spaces,Commun. Math. Phys. 92:405–454 (1984).

    Google Scholar 

  34. J. Cheeger, W. Müller, and R. Schrader, Lattice Gravity or Riemannian Structure of Piecewise Linear Space, inUnified Theories of Elementary Particles (Heisenberg Symposium 1981), Lecture notes in Physics, P. Breitenlohner and H. P. Dürr (eds.) (Springer, Berlin, 1982).

    Google Scholar 

  35. R. Friedberg and T. D. Lee, Derivation of Regge's Action from Einstein's Theory of General Relativity,Nucl. Phys. B 242: 145–166 (1984).

    Google Scholar 

  36. J. Fröhlich, Regge Calculus and Discretized Gravitational Functional Integrals, IHES preprint (1981).

  37. T. D. Lee, Discrete Mechanics, in the Proceedings of the International School of Subnuclear Physics, Erice, August 1983, to be published.

  38. N. H. Christ, R. Friedberg, and T. D. Lee, Random Lattice Field Theory: General Theory,Nucl. Phys. B202:89–125 (1982).

    Google Scholar 

  39. A. Billoire, D. J. Gross and E. Marinari, Simulating Random Surfaces,Phys. Lett. 139B:75–80 (1984).

    Google Scholar 

  40. D. Gross, The Size of Random Surfaces,Phys. Lett. 138B:185–189 (1984).

    Google Scholar 

  41. T. Sterling and J. Greensite, Entropy of Self-Avoiding Random Surfaces,Phys. Lett. 121B:345–349 (1983).

    Google Scholar 

  42. R. Schrader, String Tension and Glueball Mass in a Lattice Theory of Disconnected, SelfIntersecting Random Surfaces, RIMS Kyoto preprint 487 (September 1984).

  43. B. Durhuus, J. Fröhlich, and T. Jonsson, Critical Properties of a Model of Planar Random Surfaces,Phys. Lett. B. 137:93–97 (1983).

    Google Scholar 

  44. H. Karowski and H. J. Thun, On the Phase Structure of Systems of Self-Avoiding Surfaces, FU Berlin, preprint, March (1985).

  45. M. Karowski, R. Schrader, and H. J. Thun, Monte Carlo Simulations for Quantum Field Theories with Fermions,Commun. Math. Phys. 97:5–29 (1985).

    Google Scholar 

  46. B. Berg and A. Billoire, A Monte Carlo Simulation of Random Surfaces,Phys. Lett. 139B:297–300 (1984).

    Google Scholar 

  47. B. Berg and D. Förster, Random Paths and Random Surfaces on a Digital Computer,Phys. Lett. 106B:323–326 (1981).

    Google Scholar 

  48. T. Eguchi and M. Fukugita, Monte Carlo Simulation of Quantum String Theory,Phys. Lett. 117B:223–227 (1982).

    Google Scholar 

  49. H. Kawai and Y. Okamoto, Entropy of Planar Random Surfaces,Phys. Lett. 130B:415–419 (1983).

    Google Scholar 

  50. C. Domb, Ising Model, inPhase Transitions and Critical Phenomena, Vol. 3, C. Domb and M. S. Green (eds.) (Academic, New York, 1974).

    Google Scholar 

  51. C. Aragao de Carvalho and S. Caracciolo, A New Monte Carlo Approach to the Critical Properties of Self-Avoiding Random Walk,J. Phys. (Paris) 41:323–331 (1983).

    Google Scholar 

  52. C. Aragao de Carvalho, S. Caracciolo, and J. Fröhlich, Polymers and g}φ¦4 Theory in Four Dimensions,Nucl. Phys. B215:209–248 (1983).

    Google Scholar 

  53. J. M. Hammersley, The Number of Polygons on a Lattice,Proc. Cambridge Philos. Soc. 516–523 (1961).

  54. A. Beretti and A. Sokal, Monte Carlo Method for the Self-Avoiding Walk,J. Stat. Phys. 40:483–532 (1985).

    Google Scholar 

  55. C. Itzykson, Lattice Gauge Theories, inStatistical Mechanics of Quarks and Hadrons, H. Satz (ed.) (North-Holland, Amsterdam, 1981).

    Google Scholar 

  56. J. D. Weeks and G. M. Gilmer, Dynamics of Crystal Growth, inAdvances in Chemical Physics, Vol.40, I. Prigogine and S. A. Rice (eds.) (Interscience, New York, 1979).

    Google Scholar 

  57. A. Hasenfratz, E. Hasenfratz, and P. Hasenfratz, General Roughening Transition and its Effect on the String Tension,Nucl. Phys. B180:353–366 (1981).

    Google Scholar 

  58. C. Itzykson, M. Peskin, and J. B. Zuber, Roughening of Wilson Surface,Nucl. Phys. B180:259–264 (1980).

    Google Scholar 

  59. M. Lüscher, Symmetry-Breaking Aspects of the Roughening Transition in Gauge Theories,Nucl. Phys. B180:317–329 (1981).

    Google Scholar 

  60. G. R. Grimmett, On the Number of Clusters in the Percolation Model,J. London Math. Soc. (2) 13:346–350 (1976).

    Google Scholar 

  61. J. C. Wiermann, On Critical Probabilities in Percolation Theory,J. Math. Phys. 19:1979–1982 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by the Deutsche Forschungsgemeinschaft and NSF grant No. Phy 81 09110A 01.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schrader, R. On the Euler characteristics of random surfaces. J Stat Phys 40, 533–561 (1985). https://doi.org/10.1007/BF01017184

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01017184

Key words

Navigation