Skip to main content
Log in

Fluctuations in a fluid under a stationary heat flux II. Slow part of the correlation matrix

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The general formulas, derived in a previous paper, are used to calculate the correlation functions of the hydrodynamic variables in the Rayleigh-Bénard system. The behavior of the correlation functions on a time scale slow compared to that of sound propagation is determined, using systematically nonequilibrium hydrodynamic eigenmodes. These (slow) eigenmodes of the linearized Boussinesq equations in the presence of gravity and a temperature gradient are the viscous and the visco-heat modes. They are determined for ideal heat-conducting plates with stick boundary conditions. The visco-heat modes are found to behave qualitatively different from those obtained with slip boundary conditions. Using these eigenmodes, the slow part of the correlation functions can be determined explicitly. On a small length scale, as probed by light scattering, we recover the same expression for the Rayleigh line as quoted in the literature. On larger length scales, as probed by microwaves, the coupling of gravity to the temperature gradient gives rise to a convective instability (heating form below) or to propagating visco-heat modes (heating from above). The corresponding correlation functions and the Rayleigh line are calculated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Schmitz and E. G. D. Cohen,J. Stat. Phys. 39: 285 (1985).

    Google Scholar 

  2. B. J. Berne and R. Pecora,Dynamic Light Scattering, (Wiley, New York, 1976), Chaps. 2–4.

    Google Scholar 

  3. L. D. Landau and E. M. Lifshitz,Electrodynamics of Continuous Media (Pergamon, New York, 1960), Section 94.

    Google Scholar 

  4. D. Ronis, I. Procaccia, and I. Oppenheim,Phys. Rev. A 19:1324 (1979).

    Google Scholar 

  5. T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman,Phys. Rev. A 26:972 (1982).

    Google Scholar 

  6. T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman,Phys. Rev. A 26:995 (1982).

    Google Scholar 

  7. D. Ronis and I. Procaccia,Phys. Rev. A 26:1812 (1982).

    Google Scholar 

  8. E. G. D. Cohen and R. Schmitz, inFundamental Problems in Statistical Mechanics VI, E. G. D. Cohen, ed. (North-Holland, Amsterdam, 1985), p. 229.

    Google Scholar 

  9. V. M. Zaitsev and M. I. Shliomis,Sov. Phys. JETP 32:866 (1971).

    Google Scholar 

  10. T. R. Kirkpatrick and E. G. D. Cohen,J. Stat. Phys. 33:639 (1983).

    Google Scholar 

  11. S. Chandrasekhar,Hydrodynamic and Hydromagnetic Stability (Dover, New York, 1961), Chap. II.

    Google Scholar 

  12. D. E. Gray, ed.,American Institute of Physics Handbook (McGraw-Hill, New York, 1963).

    Google Scholar 

  13. U. Geigenmüller, U. M. Titulaer, and B. U. Felderhof,Physica 119A:41 (1983).

    Google Scholar 

  14. G. Z. Gershuni and E. M. Zhukhovitskii,Convective Stability of Incompressible Fluids, translated from the Russian (Israel Program for Scientific Translations, Jerusalem 1976), Chap. II.

  15. P. Lallemand and C. Allain,J. Phys. (Paris) 41:1 (1980).

    Google Scholar 

  16. R. Graham and H. Pleiner,Phys. Fluids 18:130 (1975).

    Google Scholar 

  17. C. Allain, P. Lallemand, and J. P. Boon, inLight Scattering in Liquids and Macromolecular Solutions, V. Degiorgio, M. Corti, and M. Giglio, eds. (Plenum Press, New York, 1980); J. P. Boon, C. Allain, and P. Lallemand,Phys. Rev. Lett. 43:199 (1979).

    Google Scholar 

  18. T. Kato,Perturbation Theory for Linear Operators, 2nd ed. (Springer, New York, 1980), Chap. II, Section 1.

    Google Scholar 

  19. J. Wesfreid, Y. Pomeau, M. Dubois, C. Normand, and P. Bergé,J. Phys. Lett. (Paris) 39:725 (1978).

    Google Scholar 

  20. I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series and Products, 4th ed. (Academic Press, New York, 1980), p. 497.

    Google Scholar 

  21. M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions (Dover, New York, 1972), p. 298.

    Google Scholar 

  22. H. N. W. Lekkerkerker and J. P. Boon,Phys. Rev. A 10:1355 (1974).

    Google Scholar 

  23. S. J. Putterman,Superfluid Hydrodynamics (North-Holland, Amsterdam, 1974), Section 7.

    Google Scholar 

  24. R. Graham and H. Pleiner,Phys. Fluids 18:130 (1975).

    Google Scholar 

  25. G. van der Zwan, D. Bedeaux, and P. Mazur,Physica 107A:491 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitz, R., Cohen, E.G.D. Fluctuations in a fluid under a stationary heat flux II. Slow part of the correlation matrix. J Stat Phys 40, 431–482 (1985). https://doi.org/10.1007/BF01017182

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01017182

Key words

Navigation