Skip to main content
Log in

A stochastic theory of chemical reaction rates. I. Formalism

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A class of stochastic processes is studied that can be used to model elementary and complex chemical reactions composed of a series of several distinct steps. Formal correlation function expressions are directly computed for the stochastic model to yield the overall rate constant for the reaction. One of the main results is a formula connecting the overall rate constant to the rate constants characterizing the elementary steps of the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. A. Lindemann,Trans. Faraday Soc. 17:598 (1922).

    Google Scholar 

  2. H. Kramers,Physica 7:284 (1940).

    Google Scholar 

  3. M. V. Smoluchowski,Phys. Z. 17:557 (1916).

    Google Scholar 

  4. R. M. Noyes,Prog. Reaction Kinet. 1:128 (1961).

    Google Scholar 

  5. G. Wilemski and M. Fixman,J. Chem. Phys. 58:4009 (1973); S. Lee and M. Karplus,J. Chem. Phys. 86:1883 (1987).

    Google Scholar 

  6. S. H. Northrup and J. T. Hynes,Chem. Phys. Lett. 54:244 (1978);J. Chem. Phys. 71:871 (1979).

    Google Scholar 

  7. R. Kapral,Adv. Chem. Phys. 48:71 (1981); M. Schell and R. Kapral,J. Chem. Phys. 75:915 (1981).

    Google Scholar 

  8. J. Troe, inPhysical Chemistry, an Advanced Treatise, Vol. 6B, H. Eyring, W. Jost, and D. Henderson, eds. (Academic, New York, 1975).

    Google Scholar 

  9. S. H. Northrup and J. T. Hynes,Chem. Phys. Lett. 54:248 (1978);J. Chem. Phys. 69:5246 (1978); A. G. Zawadzki and J. T. Hynes,Chem. Phys. Lett. 113:476 (1985).

    Google Scholar 

  10. S. H. Northrup and J. T. Hynes,J. Chem. Phys. 73:2700 (1980); R. F. Grote and J. T. Hynes,J. Chem. Phys. 73:2715 (1980); J. T. Hynes, inTheory of Chemical Reaction Dynamics, Vol. 4, M. Baer, ed. (CRC Press, Boca Raton, Florida, 1985), p. 171.

    Google Scholar 

  11. J. T. Hynes, R. Kapral, and M. Weinberg,J. Chem. Phys. 67:3256 (1977);69:2725 (1978);70:1456 (1979); M. Pagitsas, J. T. Hynes, and R. Kapral,J. Chem. Phys. 71:4492 (1979).

    Google Scholar 

  12. L. D. Zusman,Chem. Phys. 49:295 (1980); H. Friedman and M. Newton,Faraday Disc. Chem. Soc. 74:73 (1982); D. Calef and P. G. Wolynes,J. Phys. Chem. 87:3387 (1983); J. T. Hynes,J. Phys. Chem. 90:370 (1986).

    Google Scholar 

  13. B. Carmeli and A. Nitzan,Phys. Rev. Lett. 49:423 (1982);J. Chem. Phys. 80:3596 (1984).

    Google Scholar 

  14. M. Borkovec and B. J. Berne,J. Phys. Chem. 89:3994 (1985);J. Chem. Phys. 82:794 (1985).

    Google Scholar 

  15. I. L'Heureux and R. Kapral, inChemical Reactivity in Liquids: Fundamental Aspects, M. Moreau and P. Turq, eds. (Plenum Press, New York, 1987), p. 297.

    Google Scholar 

  16. R. Bellman and R. Wing,An Introduction to Invariant Embedding (Wiley, New York, 1975).

    Google Scholar 

  17. B. Gaveau, J. T. Hynes, R. Kapral, and M. Moreau, A stochastic theory of chemical reaction rates. II. Applications,J. Stat. Phys., this issue, following paper.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaveau, B., Hynes, J.T., Kapral, R. et al. A stochastic theory of chemical reaction rates. I. Formalism. J Stat Phys 56, 879–893 (1989). https://doi.org/10.1007/BF01016783

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01016783

Key words

Navigation