Skip to main content
Log in

Oscillatory convection and chaos in a Lorenz-type model of a rotating fluid

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A four-mode model of convection in a rotating fluid layer is studied. The model is an extension of the Lorenz model of Rayleigh-Bénard convection, the extra mode accounting for the regeneration of vorticity by rotation. Perturbation theory is applied to show that the Hopf bifurcations from conductive and steady convective solutions can be either supercritical or subcritical. Perturbation theory is also used at large Rayleigh numbersr to predict novel behavior. Supercritical oscillatory convection of finite amplitude is found by numerical integration of the governing equations. The general picture is of a series of oscillatory solutions stable over larger intervals, interspersed by short bursts of chaos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Knobloch, D. R. Moore, J. Toomre, and N. O. Weiss,J. Fluid Mech. 166:409–448 (1986).

    Google Scholar 

  2. E. N. Lorenz,J. Atmos. Sci. 20:130–141 (1963).

    Google Scholar 

  3. G. Veronis,J. Fluid Mech. 24:545–554 (1966).

    Google Scholar 

  4. V. Franceschini and C. Boldrighini,Commun. Math. Phys. 64:159–170 (1979).

    Google Scholar 

  5. V. Franceschini and C. Tebaldi,J. Stat. Phys. 21:707–726 (1979).

    Google Scholar 

  6. J. H. Curry,Commun. Math. Phys. 60:193–204 (1978).

    Google Scholar 

  7. L. N. Da Costa, E. Knobloch, and N. O. Weiss,J. Fluid Mech. 109:25–43 (1981).

    Google Scholar 

  8. E. Knobloch, N. O. Weiss, and L. N. Da Costa,J. Fluid Mech. 113:153–186 (1981).

    Google Scholar 

  9. P. H. Coullet and E. A. Spiegel,SIAM J. Appl. Math. 43:776–821 (1983).

    Google Scholar 

  10. A. Arneodo, P. H. Coullet, and E. A. Spiegel,Geophys. Astrophys. Fluid Dynam. 31:1–48 (1985).

    Google Scholar 

  11. R. M. Clever and F. H. Busse,J. Fluid Mech. 94:609–627 (1979).

    Google Scholar 

  12. G. Z. Gershuni and E. M. Zhukhovitskii,Convective Stability of Incompressible Fluids (Israel Program for Scientific Translations, Jerusalem, 1976).

    Google Scholar 

  13. J. K. Bhattacharjee and A. J. McKane,J. Phys. A 21:L555-L558 (1988).

    Google Scholar 

  14. G. Iooss and D. D. Joseph,Elementary Stability and Bifurcation Theory (Springer, New York, 1980).

    Google Scholar 

  15. G. Rowlands,J. Phys. A 16:585–590 (1983).

    Google Scholar 

  16. C. T. Sparrow,The Lorenz Equations: Bifurcations, Chaos and Strange Attractors (Springer, New York, 1982).

    Google Scholar 

  17. P. F. Byrd and M. D. Friedman,Handbook of Elliptic Integrals for Engineers and Scientists (Springer, New York, 1971).

    Google Scholar 

  18. J. H. Curry, inGlobal Theory of Dynamical Systems, Z. Nitecki and C. Robinson, eds. (Springer, New York, 1979).

    Google Scholar 

  19. P. Glendinning and C. T. Sparrow,J. Stat. Phys. 35:645–696 (1984).

    Google Scholar 

  20. M. J. Feigenbaum,J. Stat. Phys. 19:25–52 (1978).

    Google Scholar 

  21. V. Franceschini,J. Stat. Phys. 22:397–406 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stein, N.D. Oscillatory convection and chaos in a Lorenz-type model of a rotating fluid. J Stat Phys 56, 841–878 (1989). https://doi.org/10.1007/BF01016782

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01016782

Key words

Navigation