Skip to main content
Log in

Multiple phase transitions in the generalized Curie-Weiss model

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The generalized Curie-Weiss model is an extension of the classical Curie-Weiss model in which the quadratic interaction function of the mean spin value is replaced by a more general interaction function. It is shown that the generalized Curie-Weiss model can have a sequence of phase transitions at different critical temperatures. Both first-order and second-order phase transitions can occur, and explicit criteria for the two types are given. Three examples of generalized Curie-Weiss models are worked out in detail, including one example with infinitely many phase transitions. A number of results are derived using large-deviation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Cassandro, E. Olivieri, A. Pellegrinotti, and E. Presutti,Z. Wahrsch. Verw. Geb. 41:313–334 (1978).

    Google Scholar 

  2. F. J. Dyson, inMathematical Aspects of Statistical Mechanics, J. C. T. Pool, ed. (American Mathematical Society, Providence, Rhode Island, 1972), pp. 1–11.

    Google Scholar 

  3. T. Eisele and R. S. Ellis,Z. Wahrsch. Verw. Geb. 63:297–348 (1983).

    Google Scholar 

  4. R. S. Ellis,Entropy, Large Deviations, and Statistical Mechanics (Springer, New York, 1985).

    Google Scholar 

  5. R. S. Ellis, J. L. Monroe, and C. M. Newman,Commun. Math. Phys. 46:167–182 (1976).

    Google Scholar 

  6. R. S. Ellis and C. M. Newman,Z. Wahrsch. Verw. Geb. 44:117–139 (1978).

    Google Scholar 

  7. R. S. Ellis and C. M. Newman,Trans. Am. Math. Soc. 237:83–99 (1978).

    Google Scholar 

  8. R. S. Ellis, C. M. Newman, and J. S. Rosen,Z. Wahrsch. Verw. Geb. 51:153–169 (1980).

    Google Scholar 

  9. M. E. Fisher,Phys. Rev. 162:480–485 (1967).

    Google Scholar 

  10. R. B. Griffiths,Commun. Math. Phys. 6:121–127 (1967).

    Google Scholar 

  11. K. Husimi, inProceedings of the International Conference of Theoretical Physics, H. Yukawa, ed. (Science Council of Japan, Tokyo, 1953), pp. 531–533.

    Google Scholar 

  12. J.-W. Jeon, Central limit theorems in the regions of large deviations with applications to statistical mechanics, Dissertation, Florida State University (1979).

  13. J.-W. Jeon, inProceedings of the 3rd Japan-Korea Joint Conference of Statistics (Kyoto University, 1985).

  14. M. Kac, inStatistical Physics: Phase Transitions and Superfluidity, M. Chretien, E. P. Gross, and S. Deser (Gordon and Breach, New York, 1966), Vol. 1, pp. 241–305.

    Google Scholar 

  15. O. G. Mouritsen, B. Frank, and D. Mukamel,Phys. Rev. B 27:3018–3031 (1983).

    Google Scholar 

  16. C. M. Newman, Shock waves and mean field bounds—Concavity and analyticity of the magnetization at low temperature, Preprint, University of Arizona; also, talk given at 46th Statistical Mechanics Meeting, Rutgers University (December 1981).

  17. P. A. Pearce,J. Stat. Phys. 25:309–320 (1981).

    Google Scholar 

  18. B. Simon,J. Stat. Phys. 22:491–493 (1980).

    Google Scholar 

  19. J. Slawny,J. Stat. Phys. 32:375–388 (1983).

    Google Scholar 

  20. A. D. Sokal,J. Stat. Phys. 28:431–439 (1982).

    Google Scholar 

  21. H. N. V. Temperley,Proc. Phys. Soc. A 67:233–238 (1954).

    Google Scholar 

  22. C. J. Thompson,Commun. Math. Phys. 24:61–66 (1971).

    Google Scholar 

  23. C. J. Thompson,Mathematical Statistical Mechanics (Macmillan, New York, 1972).

    Google Scholar 

  24. J. O. Vigfusson,Lett. Math. Phys. 10:71–77 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eisele, T., Ellis, R.S. Multiple phase transitions in the generalized Curie-Weiss model. J Stat Phys 52, 161–202 (1988). https://doi.org/10.1007/BF01016409

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01016409

Key words

Navigation