Skip to main content
Log in

Absence of mass gap for a class of stochastic contour models

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study a class of Markovian stochastic processes in which the state space is a space of lattice contours and the elementary motions are local deformations. We show, under suitable hypotheses on the jump rates, that the infinitesimal generator has zero mass gap. This result covers (among others) the BFACF dynamics for fixed-endpoint self-avoiding walks and the Sterling-Greensite dynamics for fixed-boundary self-avoiding surfaces. Our models also mimic the Glauber dynamics for the low-temperature Ising model. The proofs are based on two new general principles: the minimum hitting-time argument and the mean (or mean-exponential) hitting-time argument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. D. Sokal and L. E. Thomas, Exponential convergence to equilibrium for a class of random-walk models,J. Stat. Phys., submitted.

  2. G. F. Lawler and A. D. Sokal, Bounds on theL 2 Spectrum for Markov chains and Markov processes: A generalization of Cheeger's inequality,Trans. Am. Math. Soc., to appear.

  3. A. Berretti and A. D. Sokal,J. Stat. Phys. 40:483 (1985).

    Google Scholar 

  4. N. Madras and A. D. Sokal,J. Stat. Phys. 47:573 (1987).

    Google Scholar 

  5. H. J. Hilhorst and J. M. Deutch,J. Chem. Phys. 63:5153 (1975).

    Google Scholar 

  6. H. Boots and J. M. Deutch,J. Chem. Phys. 67:4608 (1977).

    Google Scholar 

  7. S. Caracciolo and A. D. Sokal,J. Phys. A 19:L797 (1986).

    Google Scholar 

  8. Yu. Ya. Gotlib,Fiz. Tverd. Tela 3:2170 (1961) [Sov. Phys. Solid State 3:1574 (1962)].

    Google Scholar 

  9. R. J. Glauber,J. Math. Phys. 4:294 (1963).

    Google Scholar 

  10. D. A. Huse and D. S. Fisher,Phys. Rev. B 35:6841 (1987).

    Google Scholar 

  11. J. Fröhlich, inRecent Developments in Gauge Theories, G. 'tHooftet al., eds. (Plenum Press, New York, 1980), p. 65.

    Google Scholar 

  12. B. Berg and D. Foerster,Phys. Lett. 106B:323 (1981).

    Google Scholar 

  13. C. Aragão de Carvalho and S. Caracciolo,J. Phys. (Paris) 44:323 (1983).

    Google Scholar 

  14. C. Aragão de Carvalho, S. Caracciolo, and J. Fröhlich,Nucl. Phys. B 215[FS7]:209 (1983).

    Google Scholar 

  15. T. Sterling and J. Greensite,Phys. Lett. 121B:345 (1983).

    Google Scholar 

  16. B. Berg and A. Billoire,Phys. Lett. 139B:297 (1984).

    Google Scholar 

  17. B. Berg, A. Billoire, and D. Foerster,Nucl. Phys. B 251[FS13]:665 (1985).

    Google Scholar 

  18. B. Baumann and B. Berg,Phys. Lett. 164B:131 (1985).

    Google Scholar 

  19. U. Glaus and T. L. Einstein,J. Phys. A 20:L105 (1987).

    Google Scholar 

  20. U. Glaus,J. Stat. Phys. 50:1141 (1988).

    Google Scholar 

  21. E. Nummelin,General Irreducible Markov Chains and Non-Negative Operators (Cambridge University Press, Cambridge, 1984).

    Google Scholar 

  22. K. L. Chung,Markov Chains with Stationary Transition Probabilities, 2nd ed. (Springer, New York, 1967).

    Google Scholar 

  23. L. Breiman,Probability (Addison-Wesley, Reading, Massachusetts, 1968), Chapter 15.

    Google Scholar 

  24. E. B. Dynkin,Markov Processes, 2 vols. (Springer, Berlin, 1965).

    Google Scholar 

  25. R. M. Blumenthal and R. K. Getoor,Markov Processes and Potential Theory (Academic Press, New York, 1968).

    Google Scholar 

  26. I. I. Gikhman and A. V. Skorokhod,Introduction to the Theory of Random Processes (Saunders, Philadelphia, 1969).

    Google Scholar 

  27. D. Freedman,Markov Chains (Holden-Day, San Francisco, 1971).

    Google Scholar 

  28. A. D. Sokal and L. E. Thomas, Lower bounds on the autocorrelation time of a reversible Markov chain, with applications to statistical mechanics, in preparation.

  29. J. Neveu,Bases Mathématiques du Calcul des Probabilités, 2nd ed. (Masson, Paris, 1980) [English translation:Mathematical Foundations of the Calculus of Probability (Holden-Day, San Francisco, 1965)].

    Google Scholar 

  30. M. Fukushima,Dirichlet Forms and Markov Processes (North-Holland, Amsterdam, 1980).

    Google Scholar 

  31. T. Kato,Perturbation Theory for Linear Operators, 2nd ed. (Springer-Verlag, Berlin, 1976).

    Google Scholar 

  32. E. B. Dynkin,Tear. Veroya Prim. 3:41 (1958) [Theor. Prob. Appl. 3:38 (1958)].

    Google Scholar 

  33. I. I. Gihman and A. V. Skorohod,The Theory of Stochastic Processes II (Springer-Verlag, New York, 1975).

    Google Scholar 

  34. J. Neveu,Discrete-Parameter Martingales (North-Holland, Amsterdam, 1975).

    Google Scholar 

  35. S. N. Ethier and T. G. Kurtz,Markov Processes: Characterization and Convergence (Wiley, New York, 1986).

    Google Scholar 

  36. D. W. Stroock and S. R. S. Varadhan,Multidimensional Diffusion Processes (Springer-Verlag, Berlin, 1979).

    Google Scholar 

  37. C. Costantini, A. Gerardi, and G. Nappo,Stat. Prob. Lett. 1:155 (1983).

    Google Scholar 

  38. J. L. Doob,Trans. Am. Math. Soc. 58:455 (1945).

    Google Scholar 

  39. W. Feller,Ann. Math. 65:527 (1957).

    Google Scholar 

  40. G. E. H. Reuter,Acta Math. 97:1 (1957);J. Lond. Math. Soc. 34:81 (1959).

    Google Scholar 

  41. D. Williams,Z. Wahrsch. Verw. Gebiete 3:227 (1964).

    Google Scholar 

  42. P. Echeverria,Z. Wahrsch. Verw. Gebiete 61:1 (1982).

    Google Scholar 

  43. M. Fukushima and D. Stroock, inProbability, Statistical Mechanics, and Number Theory (Academic Press, New York, 1986).

    Google Scholar 

  44. T. J. Rivlin,The Chebyshev Polynomials (Wiley, New York, 1974).

    Google Scholar 

  45. W. G. Sullivan,Z. Wahrsch. Verw. Gebiete 67:387 (1984).

    Google Scholar 

  46. J.-F. Maitre and F. Musy,SIAM J. Numer. Anal. 21:657 (1984).

    Google Scholar 

  47. R. Carmona and A. Klein,Ann. Prob. 11:648 (1983).

    Google Scholar 

  48. L. E. Thomas and Zhong Yin,J. Math. Phys. 27:2475 (1986).

    Google Scholar 

  49. J. M. Hammersley,Proc. Camb. Phil. Soc. 57:516 (1961).

    Google Scholar 

  50. I. M. Lifshitz,Zh. Eksp. Teor. Fiz. 42:1354 (1962) [Sov. Phys. JETP 15:939 (1962)].

    Google Scholar 

  51. A. T. Ogielski,Phys. Rev. B 36:7315 (1987).

    Google Scholar 

  52. H. Takano, H. Nakanishi and S. Miyashita,Phys. Rev. B 37:3716 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokal, A.D., Thomas, L.E. Absence of mass gap for a class of stochastic contour models. J Stat Phys 51, 907–947 (1988). https://doi.org/10.1007/BF01014892

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01014892

Key words

Navigation