Skip to main content
Log in

Long time tails in stationary random media II: Applications

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In a previous paper we developed a mode-coupling theory to describe the long time properties of diffusion in stationary, statistically homogeneous, random media. Here the general theory is applied to deterministic and stochastic Lorentz models and several hopping models. The mode-coupling theory predicts that the amplitudes of the long time tails for these systems are determined by spatial fluctuations in a coarse-grained diffusion coefficient and a coarse-grained free volume. For one-dimensional models these amplitudes can be evaluated, and the mode-coupling theory is shown to agree with exact solutions obtained for these models. For higher-dimensional Lorentz models the formal theory yields expressions which are difficult to evaluate. For these models we develop an approximation scheme based upon projecting fluctuations in the diffusion coefficient and free volume onto fluctuations in the density of scatterers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. H. Ernst, J. Machta, J. R. Dorfman, and H. van Beijeren,J. Stat. Phys. (1984).

  2. P. Grassberger,Physica 103A:558 (1980).

    Google Scholar 

  3. H. van Beijeren,Rev. Mod. Phys. 54:195 (1982).

    Google Scholar 

  4. H. Spohn and H. van Beijeren,J. Stat. Phys. 31:231 (1983).

    Google Scholar 

  5. M. H. Ernst and H. van Beijeren,J. Stat. Phys. 26:1 (1981).

    Google Scholar 

  6. P. M. Richards and R. L. Renken,Phys. Rev. B 21:3740 (1981).

    Google Scholar 

  7. S. Alexander, J. Bernasconi, W. R. Schneider, and R. Orbach,Rev. Mod. Phys. 53:175 (1981).

    Google Scholar 

  8. J. Machta,Phys. Rev. B 24:5260 (1981).

    Google Scholar 

  9. R. Zwanzig,J. Stat. Phys. 28:127 (1982).

    Google Scholar 

  10. J. Machta,J. Stat. Phys. 30:305 (1983).

    Google Scholar 

  11. J. W. Haus, K. W. Kehr, and K. Kitahara,Phys. Rev. B 25:4918 (1982);Z. Phys. B50:161 (1983).

    Google Scholar 

  12. I. Webman and J. Klafter,Phys. Rev. B 26:5950 (1982).

    Google Scholar 

  13. M. J. Stephen and R. Kariotis,Phys. Rev. B 26:2917 (1982).

    Google Scholar 

  14. P. J. H. Denteneer and M. H. Ernst,J. Phys. C 16:L961 (1983).

    Google Scholar 

  15. J. W. Haus, K. W. Kehr, and J. Lyklema,Phys. Rev. B 25:2905 (1982).

    Google Scholar 

  16. V. Halpern,J. Phys. C 15:L827 (1982).

    Google Scholar 

  17. P. J. H. Denteneer and M. H. Ernst,Phys. Rev. B 29:1755 (1984).

    Google Scholar 

  18. E. H. Hauge,Lecture Notes in Physics, G. Kirczenow and J. Marro, eds. (Springer Verlag, Berlin, 1974), Vol. 31.

    Google Scholar 

  19. J. L. Lebowitz, J. K. Percus, and L. Verlet,Phys. Rev. 153:250 (1967); D. C. Wallace and G. K. Straub,Phys. Rev. A 27:2201 (1983).

    Google Scholar 

  20. J. Kertesz,J. Phys. (Paris) Lett. 42:L395 (1981).

    Google Scholar 

  21. S. W. Haan and R. Zwanzig,J. Phys. A. Math. Gen. 10:1547 (1977).

    Google Scholar 

  22. E. T. Gawlinski and H. E. Stanley,J. Phys. A. Math. Gen. 14:L291 (1981).

    Google Scholar 

  23. A. Masters and T. Keyes,Phys. Rev. A 25:1010 (1982); 26:2129 (1982); T. Keyes,Physica 118A:395 (1983).

    Google Scholar 

  24. M. H. Ernst and A. Weyland,Phys. Lett. 34A:39 (1971).

    Google Scholar 

  25. J. M. J. van Leeuwen and A. Weyland,Physica 36:457 (1967);38:35 (1968).

    Google Scholar 

  26. W. Götze, E. Leutheuser, and S. Yip,Phys. Rev. A 23:2634 (1981);24:100 (1981);25:533 (1982).

    Google Scholar 

  27. T. Keyes and J. Mercer,Physica 95A:473 (1979).

    Google Scholar 

  28. C. Bruin,Phys. Rev. Lett. 29:1670 (1972);Physica 72:261 (1974).

    Google Scholar 

  29. W. E. Alley, Ph.D. thesis, Univ. Calif. Davis (1979).

  30. B. J. Alder and W. E. Alley,J. Stat. Phys. 19:341 (1978).

    Google Scholar 

  31. B. J. Alder inLecture Notes in Physics, Vol. 84, L. Carrido, P. Seglar, and P. J. Shepherd, eds. (Springer, Berlin, 1978).

    Google Scholar 

  32. B. J. Alder and W. E. Alley, preprint, November (1981).

  33. B. J. Alder and W. E. Alley,Phys. Rev. Lett. 43:653 (1979).

    Google Scholar 

  34. J. C. Lewis and J. A. Tjon,Phys. Lett. 66A:349 (1978).

    Google Scholar 

  35. J. C. Lewis, private communication.

  36. F. H. Ree and W. G. Hoover,J. Chem. Phys. 40:939 (1964).

    Google Scholar 

  37. P. Visscher, private communication andPhys. Rev. B, to appear.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported by grant No. CHE 77-16308 from the National Science Foundation and by a Nato Travel Grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machta, J., Ernst, M.H., van Beijeren, H. et al. Long time tails in stationary random media II: Applications. J Stat Phys 35, 413–442 (1984). https://doi.org/10.1007/BF01014394

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01014394

Key words

Navigation