Skip to main content
Log in

Many-body functions of nonprimitive electrolytes in one dimension

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The statistical mechanics of a mixture of hard-core ions and dipoles in one dimension, namely, the one-dimensional version of the so-called nonprimitive model of an electrolyte, is considered by stressing the effect of the charge-dipole interactions and the hard-core repulsions on the thermodynamics and, especially, on the many-body functions of the systems. The adaptation of Baxter's generating function technique to this model lets us express the thermodynamic and structural functions in terms of a non-Hermitian generalized Hill-type Hamiltonian. The eigenvalues and eigenfunctions of this differential operator yield, in closed form, then-body correlation functions in the bulk and near the container's walls. We also comment on the screening of the electric fields by the system ions and study the Donnan equilibrium when one of the ionic species in the mixture cannot diffuse through a semipermeable membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. K. Percus, inSimple Models of Equilibrium and Nonequilibrium Phenomena, J. L. Lebowitz, ed. (North-Holland, Amsterdam, 1987).

    Google Scholar 

  2. L. Van Hove,Physica 16:137 (1950).

    Google Scholar 

  3. M. Kac,Phys. Fluids 2:8 (1959).

    Google Scholar 

  4. G. A. Baker, Jr.,Phys. Rev. 122:1477 (1961).

    Google Scholar 

  5. S. F. Edwards and A. Lenard,J. Math. Phys. 3:778 (1962).

    Google Scholar 

  6. H. Kunz,Ann. Phys. (NY)85:303 (1974).

    Google Scholar 

  7. R. Baxter,Phys. Fluids 7:38 (1964).

    Google Scholar 

  8. R. Baxter,Phys. Fluids 8:687 (1965).

    Google Scholar 

  9. J. L. Lebowitz, Private communication.

  10. F. Vericat and L. Blum,Physica 145A:190 (1987).

    Google Scholar 

  11. F. Vericat and L. Blum, unpublished.

  12. F. Vericat and L. Blum,J. Chem. Phys. 82:1492 (1985).

    Google Scholar 

  13. M. Aizenman and P. A. Martin,Commun. Math. Phys. 78:99 (1980).

    Google Scholar 

  14. M. Aizenman and J. Fröhlich,J. Stat. Phys. 26:347 (1981).

    Google Scholar 

  15. L. Tonks,Phys. Rev. 50:955 (1936).

    Google Scholar 

  16. Z. W. Salsburg, R. W. Zwanzig, and J. G. Kirkwood,J. Chem. Phys. 21:1098 (1953).

    Google Scholar 

  17. F. Zernike and J. Prins,Z. Phys. 41:184 (1927).

    Google Scholar 

  18. D. Hendersom, L. Blum, and J. L. Lebowitz,J. Eiectroanalyt. Chem. 102:315 (1979).

    Google Scholar 

  19. L. Blum and D. Henderson,J. Chem. Phys. 74:1902 (1981).

    Google Scholar 

  20. E. Martina,Chem. Phys. Lett. 94:205 (1983).

    Google Scholar 

  21. Y. Zhou and G. Stell,J. Chem. Phys. 89:7020 (1988).

    Google Scholar 

  22. Ph. Choquard, H. Kunz, Ph. A. Martin, and M. Navet, inPhysics in One Dimension, J. Bernasconi and T. Schneider, eds. (Springer, Berlin, 1981).

    Google Scholar 

  23. H. Fröhlich,Theory of Dielectrics (Oxford University Press, London, 1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vericat, F., Blum, L. Many-body functions of nonprimitive electrolytes in one dimension. J Stat Phys 61, 1161–1185 (1990). https://doi.org/10.1007/BF01014370

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01014370

Key words

Navigation