Skip to main content
Log in

Linear quantum enskog equation II. Inhomogeneous quantum fluids

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This is the second part of a work concerned with the quantum-statistical generalization of classical Enskog theory, whereby the first part is extended to spatially inhomogeneous fluids. In particular, working with Liouville operators and using cluster expansions and projection operators, we derive the inhomogeneous linear quantum Enskog equation and express the dynamic structure factor and the nonlocal mobility tensor in terms of the corresponding quantum Enskog collision operator. Thereby static correlations due to excluded volume effects and quantum-statistical correlations due to the fermionic (bosonic) character of the pairwise strongly interacting particles are treated exactly. When static correlations are neglected, this Enskog equation reduces to the inhomogeneous linear quantum Boltzmann equation (containing an exchange-modifiedt-matrix). In the classical limit, the well-known linear revised Enskog theory is recovered for hard spheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Loss,J. Stat. Phys. 59:691 (1990).

    Google Scholar 

  2. D. Loss and H. Schoeller,Physica A 150:199 (1988).

    Google Scholar 

  3. D. Loss and H. Schoeller,J. Stat. Phys. 54:765 (1989).

    Google Scholar 

  4. D. Loss and H. Schoeller,J. Stat. Phys. 56:175 (1989).

    Google Scholar 

  5. J. L. Lebowitz, J. Percus, and J. Sykes,Phys. Rev. 188:487 (1969).

    Google Scholar 

  6. G. F. Mazenko, T. Y. C. Wei, and S. Yip,Phys. Rev. A 6:1981 (1972).

    Google Scholar 

  7. H. H. U. Konijnendijk and J. M. J. van Leeuwen,Physica 64:342 (1973).

    Google Scholar 

  8. H. van Beijeren and M. H. Ernst,Physica 68:437 (1973).

    Google Scholar 

  9. P. Résibois and M. De Leener,Classical Kinetic Theory of Fluids (Wiley, New York, 1977).

    Google Scholar 

  10. H. van Beijeren, Dissertation, Katholieke Universiteit Nijmegen (1974).

  11. H. van Beijeren and M. H. Ernst,J. Stat. Phys. 21:125 (1979).

    Google Scholar 

  12. J. P. Hansen and I. R. McDonald,Theory of Simple Liquids, 2nd ed. (Academic Press, New York, 1986).

    Google Scholar 

  13. R. Kubo, M. Toda, and N. Hashitsume,Statistical Physics II (Springer, 1985).

  14. D. Forster,Hydrodynamic Fluctuations, Broken Symmetry and Correlation Functions (Benjamin, Reading, Massachusetts, 1975).

    Google Scholar 

  15. E. Fick and G. Sauermann,Quantenstatistik Dynamischer Prozesse, Vols. I/IIa (Harry Deutsch, Thun-Frankfurt a.M., 1983/1986).

    Google Scholar 

  16. I. M. de Schepper, E. G. D. Cohen, and B. Kamgar-Parsi,J. Stat. Phys. 54:273 (1989).

    Google Scholar 

  17. J. R. Dorfman and T. R. Kirkpatrick, inProceedings of the International School of Physics E. Fermi, C. Xcvii, G. Cicotti and W. G. Hoover, eds. (North-Holland, Amsterdam, 1986).

    Google Scholar 

  18. D. B. Boercker and J. W. Dufty,Phys. Rev. A 23:1952 (1981).

    Google Scholar 

  19. D. B. Boercker and J. W. Dufty,Ann. Phys. (N.Y.)119:43 (1979).

    Google Scholar 

  20. R. Der and R. Haberlandt,Physica A 79:597 (1975).

    Google Scholar 

  21. R. Der and R. Haberlandt,Physica A 86:25 (1977).

    Google Scholar 

  22. R. Der,Ann. Phys. (N.Y.)34:298 (1977).

    Google Scholar 

  23. P. Danielewicz,Ann. Phys. (N.Y.)152:239 (1984).

    Google Scholar 

  24. K. Kawasaki and I. Oppenheim,Phys. Rev. 139:A 1763 (1965).

    Google Scholar 

  25. J. R. Dorfman and E. G. D. Cohen,Phys. Rev. A 6:776 (1972).

    Google Scholar 

  26. R. Zwanzig,Phys. Rev. 129:486 (1963).

    Google Scholar 

  27. G. F. Mazenko,Phys. Rev. A 9:360 (1974).

    Google Scholar 

  28. J. A. McLennan,Introduction to Nonequilibrium Statistical Mechanics (Prentice Hall, Englewood Cliffs, New Jersey, 1989).

    Google Scholar 

  29. G. E. Uhlenbeck and G. W. Ford, inStudies in Statistical Mechanics, Vol. I, J. de Boer and G. E. Uhlenbeck, eds. (North-Holland, Amsterdam, 1962).

    Google Scholar 

  30. G. Stell, inThe Equilibrium Theory of Classical Fluids, H. L. Frisch and J. L. Lebowitz, eds. (Benjamin, New York, 1964).

    Google Scholar 

  31. D. Loss, H. Schoeller, and A. Thellung,Physica A 155:373 (1989).

    Google Scholar 

  32. J. Karkheck, H. van Beijeren, I. M. de Schepper, and G. Stell,Phys. Rev. A 32:2517 (1985).

    Google Scholar 

  33. J. A. Leegwater, H. van Beijeren, and J. P. J. Michels,J. Phys. Condens. Matter 1:237 (1989).

    Google Scholar 

  34. R. Balescu,Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, New York, 1975).

    Google Scholar 

  35. J. L. Lebowitz and J. K. Percus,J. Math. Phys. 4:116 (1963).

    Google Scholar 

  36. P. Résibois,J. Stat. Phys. 19:593 (1978);Physica 94A:1 (1979).

    Google Scholar 

  37. J. Blawzdziewicz and G. Stell,J. Stat. Phys. 56:821 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loss, D. Linear quantum enskog equation II. Inhomogeneous quantum fluids. J Stat Phys 61, 467–493 (1990). https://doi.org/10.1007/BF01013976

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01013976

Key words

Navigation