Skip to main content
Log in

Stable nonequilibrium probability densities and phase transitions for meanfield models in the thermodynamic limit

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A nonlinear Fokker-Planck equation is derived to describe the cooperative behavior of general stochastic systems interacting via mean-field couplings, in the limit of an infinite number of such systems. Disordered systems are also considered. In the weak-noise limit; a general result yields the possibility of having bifurcations from stationary solutions of the nonlinear Fokker-Planck equation into stable time-dependent solutions. The latter are interpreted as non-equilibrium probability distributions (states), and the bifurcations to them as nonequilibrium phase transitions. In the thermodynamic limit, results for three models are given for illustrative purposes. A model of self-synchronization of nonlinear oscillators presents a Hopf bifurcation to a time-periodic probability density, which can be analyzed for any value of the noise. The effects of disorder are illustrated by a simplified version of the Sompolinsky-Zippelius model of spin-glasses. Finally, results for the Fukuyama-Lee-Fisher model of charge-density waves are given. A singular perturbation analysis shows that the depinning transition is a bifurcation problem modified by the disorder noise due to impurities. Far from the bifurcation point, the CDW is either pinned or free, obeying (to leading order) the Grüner-Zawadowki-Chaikin equation. Near the bifurcation, the disorder noise drastically modifies the pattern, giving a quenched average of the CDW current which is constant. Critical exponents are found to depend on the noise, and they are larger than Fisher's values for the two probability distributions considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Lebowitz and P. G. Bergmann,Ann. Phys. (N.Y.)1:1 (1957).

    Google Scholar 

  2. R. C. Desai and R. Zwanzig,J. Stat. Phys. 19:1 (1978).

    Google Scholar 

  3. D. A. Dawson,J. Stat. Phys. 31:29 (1983).

    Google Scholar 

  4. L. L. Bonilla,Phys. Rev. B 35, to appear (1986); and in preparation.

  5. L. L. Bonilla, J. M. Casado, and M. Morillo, in preparation.

  6. W. Horsthemke and R. Lefever, inStochastic Nonlinear Systems, L. Arnold and R. Lefever, eds. (Springer, New York, 1981); also I. Prigogine and I. Stengers,Order out of Chaos (Bantam Books, Toronto, 1984).

    Google Scholar 

  7. H. Sompolinsky and A. Zippelius,Phys. Rev. B 25:6860 (1982).

    Google Scholar 

  8. D. S. Fisher,Phys. Rev. B 31:1396 (1985).

    Google Scholar 

  9. Y. Yamaguchi, K. Kometani, and H. Shimizu,J. Stat. Phys. 26:719 (1981).

    Google Scholar 

  10. H. Fukuyama and P. A. Lee,Phys. Rev. B 17:535 (1977).

    Google Scholar 

  11. R. Graham,Z. Phys. B 26:281 (1977); B. Jouvet and R. Phythian,Phys. Rev. A 19:1350 (1979).

    Google Scholar 

  12. H. Jauslin,J. Stat. Phys. 40:147 (1985).

    Google Scholar 

  13. B. J. Matkowsky and E. L. Reiss,SIAM J. Appl. Math. 33:230 (1977); J. G. Watson and E. L. Reiss,SIAM J. Appl. Math. 42:135 (1982).

    Google Scholar 

  14. J. L. Lebowitz, inLong Time Prediction in Dynamics, D. Horton, L. Reichl, and S. Szebehely, eds. (Wiley, New York, 1983), p. 3; J. L. Lebowitz and H. Spohn,Commun. Pure Appl. Math. 36:595 (1983); J. B. Keller and L. L. Bonilla,J. Stat. Phys. 42:1115 (1986).

    Google Scholar 

  15. Y. Kuramoto,Physica 106A:128 (1981).

    Google Scholar 

  16. L. Sneddon,Phys. Rev. B 29:719, 725 (1984).

    Google Scholar 

  17. G. Grüner and A. Zettl,Phys. Rep. 119:117 (1985).

    Google Scholar 

  18. M. O. Robbins, J. P. Stokes, and S. Bhattacharya,Phys. Rev. Lett. 55:2822 (1985).

    Google Scholar 

  19. J. J. Brey, J. M. Casado, and M. Morillo,Physica 128A:497 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonilla, L.L. Stable nonequilibrium probability densities and phase transitions for meanfield models in the thermodynamic limit. J Stat Phys 46, 659–678 (1987). https://doi.org/10.1007/BF01013379

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01013379

Key words

Navigation