Skip to main content
Log in

Fractal dimension and grand Universality of critical phenomena

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Conformation of branched random fractals formed in equilibrium processes is discussed using a Flory-type theory. Within this approach we find only three distinct types or classes of random fractals. We call these theextended, thecompensated, and thecollapsed states. In particular, the critical clusters in thermal phase transitions are found to be of the compensated type and have approximately the same value of the fractal dimension. The Flory theory predicts the upper critical dimension for these clusters to be 6 instead of 4. This result and the apparent “grand” universality of the fractal geometry of the clusters in critical phenomena are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. B. Mandelbrot,Fractals: Form, Chance and Dimension (Freeman, New York, 1977);The Fractal Geometry of Nature (Freeman, New York, 1982).

    Google Scholar 

  2. H. E. Stanley,J. Phys. A 10:L211 (1977).

    Google Scholar 

  3. R. J. Harrison, G. H. Bishop, and G. D. Quinn,J. Stat. Phys. 19:53 (1978).

    Google Scholar 

  4. D. Stauffer,Phys. Rep. 54:1 (1979).

    Google Scholar 

  5. A. Kapitulnik, A. Aharony, G. Deutcher, and Stauffer,J. Phys. A 16: L269 (1983).

    Google Scholar 

  6. F. Family, inInternational Union of Pure and Applied Chemistry 28th Macromolecular Symposium, J. Chien, R. Lenz, and O. Vogl, eds. (IUPAC, New York, 1982), p. 533.

    Google Scholar 

  7. S. Havlin and D. Ben-Avraham,Phys. Rev. A 26:1728 (1982).

    Google Scholar 

  8. F. Family, inRandom Walks and Their Applications in the Physical and Biological Sciences, M. F. Shlesinger and B. J. West, eds.,AIP Conf. Proc. 109:33 (1984).

  9. T. A. Witten, Jr. and L. M. Sander,Phys. Rev. Lett. 47:1400 (1981).

    Google Scholar 

  10. P. Meakin,Phys. Rev. Lett. 51:1119 (1983).

    Google Scholar 

  11. H. Gould, F. Family, and H. E. Stanley,Phys. Rev. Lett. 50:686 (1983).

    Google Scholar 

  12. F. Family and D. P. Landau, eds.,Kinetics of Aggregation and Gelation, Proceedings of the International Topical Conference on Kinetics of Aggregation and Gelation (North-Holland, Amsterdam, 1984).

    Google Scholar 

  13. F. Family,Phys. Rev. Lett. 51:2112 (1983).

    Google Scholar 

  14. D. Ben-Avraham and S. Havlin,J. Phys. A 16:L559 (1983).

    Google Scholar 

  15. T. Vicsek,J. Phys. A 16:647 (1983).

    Google Scholar 

  16. C. Domb,Adv. Chem. Phys. 15:229 (1969).

    Google Scholar 

  17. T. C. Lubensky and J. Isaacson,Phys. Rev. A 20:2130 (1979).

    Google Scholar 

  18. F. Family,J. Phys. A 13:L325 (1980).

    Google Scholar 

  19. A. Margolina, F. Family, and V. Privman,Z. Phys. B54:321 (1984).

    Google Scholar 

  20. J. W. Essam,Rep. Prog. Phys. 43:833 (1980).

    Google Scholar 

  21. M. Suzuki,Prog. Theor. Phys. 51:1992 (1974).

    Google Scholar 

  22. P. J. Flory,Principles of Polymer Chemistry (Cornell University Press, Ithaca, New York, 1953).

    Google Scholar 

  23. M. E. Fisher,J. Phys. Soc. Japan (Suppl.) 28:44 (1969).

    Google Scholar 

  24. P. G. de Gennes,Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, New York, 1979).

    Google Scholar 

  25. P. G. de Gennes,C. R. Acad. Sci. Paris 291:17 (1980).

    Google Scholar 

  26. J. Isaacson and T. C. Lubensky,J. Phys. (Paris) Lett. 41:L-469 (1980).

    Google Scholar 

  27. M. Daoud and J. F. Joanny,J. Phys. (Paris) 42:1359 (1981).

    Google Scholar 

  28. A. Coniglio and W. Klein,J. Phys. A 12:2775 (1980).

    Google Scholar 

  29. A. Coniglio and T. C. Lubensky,J. Phys. A 13:1783 (1980).

    Google Scholar 

  30. A. Coniglio and F. Peruggi,J. Phys. A 15:1873 (1982).

    Google Scholar 

  31. H. Müller-Krumbhaar,Phys. Lett. 50A:27 (1974).

    Google Scholar 

  32. A. Coniglio, C. R. Nappi, F. Peruggi, and L. Russo,J. Phys. A 10:205 (1977).

    Google Scholar 

  33. M. F. Sykes and D. S. Gaunt,J. Phys. A 9:2131 (1976).

    Google Scholar 

  34. J. Kertesz, D. Stauffer, and A. Coniglio, inPercolation Structures and Processes, G. Deutcher, R. Zallen, and J. Adler, eds. (Adam Hilger, Bristol, 1983).

    Google Scholar 

  35. B. H. Zimm and W. H. Stockmayer,J. Chem. Phys. 17:1301 (1949).

    Google Scholar 

  36. G. R. Dobson and M. Gordon,J. Chem. Phys. 41:2389 (1964).

    Google Scholar 

  37. P. G. de Gennes,Biopolymers 6:715 (1968).

    Google Scholar 

  38. W. A. Seitz and D. J. Klein,J. Chem. Phys. 75:5190 (1981).

    Google Scholar 

  39. H. P. Peters, D. Stauffer, H. P. Holters, and K. Lowenich,Z. Phys. B34:399 (1979).

    Google Scholar 

  40. M. Sweeny,Phys. Rev. B 27:4445 (1983).

    Google Scholar 

  41. F. Y. Wu,Rev. Mod. Phys. 54:235 (1982).

    Google Scholar 

  42. M. A. Novotny and D. P. Landau,Phys. Rev. B 24:1468 (1981); A. N. Berker and D. Andelman, preprint, 1984.

    Google Scholar 

  43. M. Corti and V. Degiorgio,Phys. Rev. Lett. 45:1045 (1980).

    Google Scholar 

  44. R. Dorshow, F. de Buzzaccarini, C. A. Bunton, and D. F. Nicoli,Phys. Rev. Lett. 47:1336 (1981).

    Google Scholar 

  45. J. S. Huang and M. W. Kim,Phys. Rev. Lett. 47:1462 (1981).

    Google Scholar 

  46. M. Corti, V. Degiorgio, and M. Zulauf,Phys. Rev. Lett. 48:1617 (1982).

    Google Scholar 

  47. M. Kothlarchyk, S. H. Chen, and J. S. Huang,Phys. Rev. A 28: 508 (1983).

    Google Scholar 

  48. D. W. Schaefer and K. D. Keefer, preprint, 1984.

  49. S. F. Edwards,Proc. Phys. Soc. London 88:265 (1966).

    Google Scholar 

  50. M. E. Fisher,Rev. Mod. Phys. 46:597 (1974).

    Google Scholar 

  51. J. A. Marqusee and J. M. Deutch,J. Chem. Phys. 75:5179 (1981).

    Google Scholar 

  52. D. S. Gaunt and M. F. Sykes,J. Phys. A 16:783 (1983).

    Google Scholar 

  53. J. C. Le Guillou and J. Zinn-Justin,Phys. Rev. B 21:3976 (1980).

    Google Scholar 

  54. R. J. Birgenau, R. A. Cowley, G. Shirane, H. Yoshizawa, D. P. Belanger, A. R. King, and V. Jaccarino,Phys. Rev. B 27:6747 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Family, F. Fractal dimension and grand Universality of critical phenomena. J Stat Phys 36, 881–896 (1984). https://doi.org/10.1007/BF01012947

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01012947

Key words

Navigation